Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 30;67(Pt 12):o3513. doi: 10.1107/S1600536811050872

1-Cyclo­hexyl-5-(4-meth­oxy­phen­yl)-1H-pyrazole-4-carb­oxy­lic acid

Hoong-Kun Fun a,*,, Ching Kheng Quah a,§, B Chandrakantha b, A M Isloor c, Prakash Shetty d
PMCID: PMC3239134  PMID: 22199982

Abstract

In the title compound, C17H20N2O3, the meth­oxy­phenyl unit is disordered over two sets of sites in a 0.715 (4):0.285 (4) ratio. The pyrazole ring forms dihedral angles of 55.88 (16) and 72.6 (4)° with the benzene rings of its major and minor components, respectively. The cyclo­hexane ring adopts a chair conformation and its C—N bond is in an equatorial orientation. In the crystal, mol­ecules are linked into inversion dimers by pairs of O—H⋯O hydrogen bonds, generating R 2 2(8) loops.

Related literature

For bond-length data, see: Allen et al. (1987). For related structures and medicinal background to pyrazole derivatives, see: Fun et al. (2010a ,b , 2011). For hydrogen-bond motifs, see: Bernstein et al. (1995). For ring conformations, see: Cremer & Pople (1975).graphic file with name e-67-o3513-scheme1.jpg

Experimental

Crystal data

  • C17H20N2O3

  • M r = 300.35

  • Monoclinic, Inline graphic

  • a = 12.0722 (9) Å

  • b = 12.7180 (9) Å

  • c = 11.7739 (8) Å

  • β = 118.698 (1)°

  • V = 1585.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.39 × 0.20 × 0.15 mm

Data collection

  • Bruker SMART APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.967, T max = 0.987

  • 24474 measured reflections

  • 4585 independent reflections

  • 2766 reflections with I > 2σ(I)

  • R int = 0.049

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056

  • wR(F 2) = 0.159

  • S = 1.03

  • 4585 reflections

  • 239 parameters

  • 17 restraints

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811050872/hb6534sup1.cif

e-67-o3513-sup1.cif (23KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811050872/hb6534Isup2.hkl

e-67-o3513-Isup2.hkl (224.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811050872/hb6534Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1O2⋯O1i 0.91 1.73 2.640 (2) 174

Symmetry code: (i) Inline graphic.

Acknowledgments

HKF and CKQ thank Universiti Sains Malaysia (USM) for the Research University Grant (No. 1001/PFIZIK/811160). AMI thanks the Board for Research in Nuclear Sciences, Department of Atomic Energy, Government of India for the Young Scientist award.

supplementary crystallographic information

Comment

As part of our ongoing structural studies of pyrazole derivatives (Fun et al., 2010a, 2010b), we now describe the synthesis and structure of the title compound, (I).

The molecular structure is shown in Fig. 1. The methoxy phenyl moiety (O3/C4-C9/C17) is disordered over two sets of sites with refined site occupancies of 0.715 (4): 0.285 (4). The pyrazole ring (N1/N2/C1-C3) forms dihedral angles of 55.88 (16) and 72.6 (4)° with the benzene rings (C4-C9) of major and minor components of the methoxy phenyl moiety, respectively. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to related structures (Fun et al., 2010a, 2010b, 2011). The cyclohexane ring (C10-C15) adopts a chair conformation with puckering parameters (Cremer & Pople, 1975) Q = 0.571 (2) Å, Θ = 1.0 (2)° and φ = 300 (19)°.

In the crystal (Fig. 2), molecules are linked into inversion dimers by pairs of O2–H1O2···O1 hydrogen bonds (Table 1), generating eight-membered R22(8) ring motifs (Bernstein et al., 1995).

Experimental

A mixture of ethyl-3-(dimethylamino)-2-(4-methoxy phenylcarbonyl) prop-2-enoate (2.0g, 0.0088 mol) and cyclohexyl hydrazine (1.0 g, 0.0096 mol) in absolute ethanol (20 ml) was refluxed for 2h. On cooling, the separated colorless needle-shaped crystals of 5-(4-methoxy phenyl)-1-phenyl-1H-pyrazole-4- carboxylic acid ethyl ester were collected by filtration (yield: 2.0 g, 86%, m.p.: 390-395K). To a stirred solution of ester (1.0 g, 0.0031 mol) in THF with water (1:1, 20 ml) was added lithium hydroxide (0.26 g, 0.0062 mol) and the mixture was stirred at RT for 6h. The reaction mixture was concentrated and acidified with 10% citric acid solution. The solid that separated out was filtered and dried under high vacuum to afford title compound as colorless crystalline solid. Compound was recrystallized from methanol to yield colourless needles (yield: 1.5 g, 83%, m.p. 413-418K).

Refinement

Atom H1O2 was located in a difference Fourier map and refined using a riding model with O2-H1O2 = 0.9133 Å and Uiso(H) = 1.5 Ueq(O). The remaining H atoms were positioned geometrically and refined using a riding model with C–H = 0.93-0.98 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl groups. The methoxy phenyl moiety (O3/C4-C9/C17) is disordered over two positions with refined site occupancies of 0.715 (4): 0.285 (4).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing 30% probability displacement ellipsoids for non-H atoms. Both major and minor components of disorder are shown.

Fig. 2.

Fig. 2.

The crystal structure of the major component of the title compound, viewed along the a axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.

Crystal data

C17H20N2O3 F(000) = 640
Mr = 300.35 Dx = 1.258 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 5000 reflections
a = 12.0722 (9) Å θ = 2.5–29.8°
b = 12.7180 (9) Å µ = 0.09 mm1
c = 11.7739 (8) Å T = 296 K
β = 118.698 (1)° Needle, colourless
V = 1585.6 (2) Å3 0.39 × 0.20 × 0.15 mm
Z = 4

Data collection

Bruker SMART APEXII DUO CCD diffractometer 4585 independent reflections
Radiation source: fine-focus sealed tube 2766 reflections with I > 2σ(I)
graphite Rint = 0.049
φ and ω scans θmax = 29.9°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −16→16
Tmin = 0.967, Tmax = 0.987 k = −17→17
24474 measured reflections l = −16→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0614P)2 + 0.3536P] where P = (Fo2 + 2Fc2)/3
4585 reflections (Δ/σ)max = 0.001
239 parameters Δρmax = 0.21 e Å3
17 restraints Δρmin = −0.28 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.07405 (12) 0.45236 (14) 0.92263 (12) 0.0870 (5)
O2 0.15254 (12) 0.47797 (13) 1.13352 (11) 0.0814 (5)
H1O2 0.0749 0.4999 1.1195 0.122*
O3A 0.1055 (2) 0.39532 (19) 0.44671 (17) 0.0769 (8) 0.715 (4)
C4A 0.2726 (5) 0.3627 (5) 0.8457 (5) 0.0409 (10) 0.715 (4)
C5A 0.1549 (3) 0.3174 (3) 0.7674 (3) 0.0528 (7) 0.715 (4)
H5AA 0.1137 0.2823 0.8057 0.063* 0.715 (4)
C6A 0.0978 (4) 0.3237 (3) 0.6330 (3) 0.0573 (9) 0.715 (4)
H6AA 0.0206 0.2909 0.5820 0.069* 0.715 (4)
C7A 0.1563 (3) 0.3787 (3) 0.5760 (2) 0.0489 (6) 0.715 (4)
C8A 0.2749 (3) 0.4202 (2) 0.6523 (3) 0.0523 (7) 0.715 (4)
H8AA 0.3168 0.4540 0.6139 0.063* 0.715 (4)
C9A 0.3314 (3) 0.4121 (2) 0.7843 (3) 0.0453 (6) 0.715 (4)
H9AA 0.4115 0.4405 0.8341 0.054* 0.715 (4)
C17A −0.0253 (3) 0.3757 (3) 0.3667 (3) 0.0861 (11) 0.715 (4)
H17A −0.0504 0.3991 0.2802 0.129* 0.715 (4)
H17B −0.0727 0.4129 0.3999 0.129* 0.715 (4)
H17C −0.0413 0.3016 0.3657 0.129* 0.715 (4)
O3B 0.0427 (5) 0.3332 (4) 0.4351 (5) 0.0707 (18)* 0.285 (4)
C4B 0.2589 (16) 0.3476 (14) 0.8323 (13) 0.043 (3)* 0.285 (4)
C5B 0.1646 (8) 0.2768 (6) 0.7716 (8) 0.051 (2)* 0.285 (4)
H5B 0.1475 0.2291 0.8211 0.061* 0.285 (4)
C6 0.0940 (9) 0.2735 (8) 0.6402 (9) 0.059 (2) 0.285 (4)
H6B 0.0277 0.2259 0.6006 0.070* 0.285 (4)
C7B 0.1219 (7) 0.3407 (6) 0.5680 (7) 0.0456 (18)* 0.285 (4)
C8B 0.2195 (9) 0.4113 (7) 0.6240 (8) 0.060 (2)* 0.285 (4)
H8B 0.2389 0.4551 0.5727 0.072* 0.285 (4)
C9B 0.2888 (8) 0.4168 (8) 0.7578 (9) 0.062 (3)* 0.285 (4)
H9B 0.3539 0.4654 0.7976 0.074* 0.285 (4)
C17B 0.0494 (10) 0.4149 (7) 0.3569 (10) 0.092 (3)* 0.285 (4)
H17D −0.0130 0.4034 0.2684 0.138* 0.285 (4)
H17E 0.1319 0.4157 0.3637 0.138* 0.285 (4)
H17F 0.0338 0.4812 0.3857 0.138* 0.285 (4)
N1 0.44673 (12) 0.32694 (11) 1.06351 (12) 0.0524 (3)
N2 0.48284 (13) 0.34101 (14) 1.19163 (13) 0.0676 (4)
C1 0.38353 (16) 0.38444 (16) 1.19118 (16) 0.0650 (5)
H1A 0.3804 0.4035 1.2658 0.078*
C2 0.28347 (14) 0.39865 (14) 1.06610 (15) 0.0525 (4)
C3 0.32756 (13) 0.36065 (13) 0.98426 (14) 0.0460 (3)
C10 0.53239 (13) 0.27005 (13) 1.02944 (15) 0.0482 (4)
H10A 0.4887 0.2600 0.9354 0.058*
C11 0.56252 (17) 0.16218 (14) 1.09219 (18) 0.0602 (4)
H11A 0.4849 0.1227 1.0639 0.072*
H11B 0.6021 0.1698 1.1855 0.072*
C12 0.65043 (16) 0.10250 (14) 1.05635 (18) 0.0620 (5)
H12A 0.6723 0.0355 1.1013 0.074*
H12B 0.6072 0.0884 0.9640 0.074*
C13 0.76923 (16) 0.16370 (16) 1.0912 (2) 0.0734 (6)
H13A 0.8210 0.1254 1.0628 0.088*
H13B 0.8171 0.1715 1.1845 0.088*
C14 0.73834 (17) 0.27110 (16) 1.0285 (2) 0.0730 (6)
H14A 0.6976 0.2632 0.9351 0.088*
H14B 0.8159 0.3103 1.0555 0.088*
C15 0.65178 (16) 0.33218 (14) 1.0652 (2) 0.0622 (5)
H15A 0.6952 0.3460 1.1575 0.075*
H15B 0.6302 0.3992 1.0203 0.075*
C16 0.16128 (15) 0.44458 (16) 1.03370 (16) 0.0589 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0572 (7) 0.1573 (15) 0.0477 (7) 0.0425 (8) 0.0262 (6) 0.0055 (8)
O2 0.0613 (7) 0.1362 (13) 0.0527 (7) 0.0334 (8) 0.0323 (6) −0.0050 (7)
O3A 0.0761 (14) 0.1104 (18) 0.0383 (10) 0.0057 (13) 0.0227 (9) 0.0049 (10)
C4A 0.0356 (19) 0.051 (2) 0.0423 (17) 0.0014 (13) 0.0234 (14) −0.0032 (16)
C5A 0.0468 (14) 0.068 (2) 0.0531 (15) −0.0086 (15) 0.0315 (12) −0.0019 (14)
C6A 0.0447 (14) 0.077 (2) 0.0497 (16) −0.0107 (18) 0.0226 (12) −0.0097 (17)
C7A 0.0523 (16) 0.0575 (17) 0.0399 (13) 0.0057 (14) 0.0246 (12) 0.0014 (12)
C8A 0.0507 (16) 0.0666 (16) 0.0485 (14) 0.0042 (13) 0.0308 (13) 0.0101 (11)
C9A 0.0399 (14) 0.0515 (14) 0.0479 (14) 0.0012 (12) 0.0237 (12) 0.0039 (10)
C17A 0.0647 (18) 0.121 (3) 0.0512 (16) 0.0264 (19) 0.0110 (14) −0.0099 (16)
C6 0.047 (4) 0.073 (6) 0.059 (4) −0.013 (4) 0.027 (3) −0.003 (4)
N1 0.0429 (7) 0.0684 (9) 0.0456 (7) 0.0084 (6) 0.0212 (6) −0.0078 (6)
N2 0.0543 (8) 0.0971 (12) 0.0453 (8) 0.0182 (8) 0.0190 (6) −0.0117 (7)
C1 0.0571 (10) 0.0919 (14) 0.0469 (9) 0.0174 (9) 0.0257 (8) −0.0064 (9)
C2 0.0466 (8) 0.0704 (10) 0.0457 (8) 0.0107 (7) 0.0261 (7) 0.0011 (7)
C3 0.0401 (7) 0.0557 (9) 0.0461 (8) 0.0029 (6) 0.0238 (6) 0.0001 (6)
C10 0.0380 (7) 0.0575 (9) 0.0505 (8) 0.0035 (6) 0.0224 (6) −0.0086 (7)
C11 0.0566 (9) 0.0603 (10) 0.0690 (11) 0.0006 (8) 0.0344 (9) −0.0028 (8)
C12 0.0566 (10) 0.0564 (10) 0.0689 (11) 0.0086 (8) 0.0268 (9) −0.0059 (8)
C13 0.0450 (9) 0.0802 (13) 0.0877 (14) 0.0097 (9) 0.0259 (9) −0.0166 (11)
C14 0.0508 (9) 0.0802 (13) 0.1005 (15) −0.0074 (9) 0.0463 (10) −0.0130 (11)
C15 0.0515 (9) 0.0560 (10) 0.0826 (13) −0.0032 (7) 0.0351 (9) −0.0106 (9)
C16 0.0501 (9) 0.0872 (13) 0.0474 (9) 0.0161 (8) 0.0297 (8) 0.0036 (8)

Geometric parameters (Å, °)

O1—C16 1.227 (2) C8B—H8B 0.9300
O2—C16 1.3007 (19) C9B—H9B 0.9300
O2—H1O2 0.9133 C17B—H17D 0.9600
O3A—C7A 1.357 (3) C17B—H17E 0.9600
O3A—C17A 1.419 (4) C17B—H17F 0.9600
C4A—C9A 1.384 (4) N1—C3 1.3546 (19)
C4A—C5A 1.394 (5) N1—N2 1.3660 (18)
C4A—C3 1.436 (5) N1—C10 1.4671 (18)
C5A—C6A 1.393 (4) N2—C1 1.318 (2)
C5A—H5AA 0.9300 C1—C2 1.397 (2)
C6A—C7A 1.376 (4) C1—H1A 0.9300
C6A—H6AA 0.9300 C2—C3 1.392 (2)
C7A—C8A 1.379 (4) C2—C16 1.457 (2)
C8A—C9A 1.368 (4) C10—C15 1.515 (2)
C8A—H8AA 0.9300 C10—C11 1.517 (2)
C9A—H9AA 0.9300 C10—H10A 0.9800
C17A—H17A 0.9600 C11—C12 1.520 (2)
C17A—H17B 0.9600 C11—H11A 0.9700
C17A—H17C 0.9600 C11—H11B 0.9700
O3B—C7B 1.391 (8) C12—C13 1.505 (3)
O3B—C17B 1.416 (10) C12—H12A 0.9700
C4B—C5B 1.355 (12) C12—H12B 0.9700
C4B—C9B 1.407 (13) C13—C14 1.512 (3)
C4B—C3 1.578 (14) C13—H13A 0.9700
C5B—C6 1.363 (10) C13—H13B 0.9700
C5B—H5B 0.9300 C14—C15 1.521 (2)
C6—C7B 1.358 (10) C14—H14A 0.9700
C6—H6B 0.9300 C14—H14B 0.9700
C7B—C8B 1.373 (9) C15—H15A 0.9700
C8B—C9B 1.386 (10) C15—H15B 0.9700
C16—O2—H1O2 117.2 N2—C1—H1A 123.7
C7A—O3A—C17A 118.5 (3) C2—C1—H1A 123.7
C9A—C4A—C5A 117.3 (4) C3—C2—C1 105.08 (14)
C9A—C4A—C3 121.9 (4) C3—C2—C16 129.32 (15)
C5A—C4A—C3 120.8 (3) C1—C2—C16 125.60 (15)
C6A—C5A—C4A 121.2 (3) N1—C3—C2 105.40 (13)
C6A—C5A—H5AA 119.4 N1—C3—C4A 123.2 (3)
C4A—C5A—H5AA 119.4 C2—C3—C4A 131.2 (3)
C7A—C6A—C5A 119.6 (3) N1—C3—C4B 123.6 (8)
C7A—C6A—H6AA 120.2 C2—C3—C4B 130.8 (8)
C5A—C6A—H6AA 120.2 N1—C10—C15 111.61 (13)
O3A—C7A—C6A 124.4 (3) N1—C10—C11 110.39 (13)
O3A—C7A—C8A 116.1 (3) C15—C10—C11 111.26 (13)
C6A—C7A—C8A 119.5 (2) N1—C10—H10A 107.8
C9A—C8A—C7A 120.4 (2) C15—C10—H10A 107.8
C9A—C8A—H8AA 119.8 C11—C10—H10A 107.8
C7A—C8A—H8AA 119.8 C10—C11—C12 110.64 (15)
C8A—C9A—C4A 121.8 (3) C10—C11—H11A 109.5
C8A—C9A—H9AA 119.1 C12—C11—H11A 109.5
C4A—C9A—H9AA 119.1 C10—C11—H11B 109.5
C7B—O3B—C17B 117.3 (7) C12—C11—H11B 109.5
C5B—C4B—C9B 119.3 (11) H11A—C11—H11B 108.1
C5B—C4B—C3 121.2 (9) C13—C12—C11 111.52 (15)
C9B—C4B—C3 119.3 (9) C13—C12—H12A 109.3
C4B—C5B—C6 121.9 (9) C11—C12—H12A 109.3
C4B—C5B—H5B 119.0 C13—C12—H12B 109.3
C6—C5B—H5B 119.0 C11—C12—H12B 109.3
C7B—C6—C5B 118.9 (8) H12A—C12—H12B 108.0
C7B—C6—H6B 120.5 C12—C13—C14 110.78 (15)
C5B—C6—H6B 120.5 C12—C13—H13A 109.5
C6—C7B—C8B 121.7 (7) C14—C13—H13A 109.5
C6—C7B—O3B 114.7 (7) C12—C13—H13B 109.5
C8B—C7B—O3B 123.6 (7) C14—C13—H13B 109.5
C7B—C8B—C9B 119.3 (8) H13A—C13—H13B 108.1
C7B—C8B—H8B 120.3 C13—C14—C15 111.37 (17)
C9B—C8B—H8B 120.3 C13—C14—H14A 109.4
C8B—C9B—C4B 118.8 (9) C15—C14—H14A 109.4
C8B—C9B—H9B 120.6 C13—C14—H14B 109.4
C4B—C9B—H9B 120.6 C15—C14—H14B 109.4
O3B—C17B—H17D 109.5 H14A—C14—H14B 108.0
O3B—C17B—H17E 109.5 C10—C15—C14 110.26 (14)
H17D—C17B—H17E 109.5 C10—C15—H15A 109.6
O3B—C17B—H17F 109.5 C14—C15—H15A 109.6
H17D—C17B—H17F 109.5 C10—C15—H15B 109.6
H17E—C17B—H17F 109.5 C14—C15—H15B 109.6
C3—N1—N2 112.92 (12) H15A—C15—H15B 108.1
C3—N1—C10 128.51 (13) O1—C16—O2 122.41 (15)
N2—N1—C10 118.26 (12) O1—C16—C2 123.66 (15)
C1—N2—N1 104.07 (13) O2—C16—C2 113.93 (14)
N2—C1—C2 112.52 (15)
C9A—C4A—C5A—C6A −1.4 (8) C1—C2—C3—N1 0.32 (19)
C3—C4A—C5A—C6A 176.6 (4) C16—C2—C3—N1 179.92 (18)
C4A—C5A—C6A—C7A −2.3 (6) C1—C2—C3—C4A −173.6 (3)
C17A—O3A—C7A—C6A 14.3 (4) C16—C2—C3—C4A 6.0 (4)
C17A—O3A—C7A—C8A −166.1 (3) C1—C2—C3—C4B 175.8 (7)
C5A—C6A—C7A—O3A −175.6 (3) C16—C2—C3—C4B −4.6 (7)
C5A—C6A—C7A—C8A 4.8 (5) C9A—C4A—C3—N1 −53.1 (7)
O3A—C7A—C8A—C9A 176.7 (2) C5A—C4A—C3—N1 129.0 (5)
C6A—C7A—C8A—C9A −3.6 (4) C9A—C4A—C3—C2 119.9 (5)
C7A—C8A—C9A—C4A −0.1 (5) C5A—C4A—C3—C2 −58.0 (7)
C5A—C4A—C9A—C8A 2.6 (7) C9A—C4A—C3—C4B −149 (8)
C3—C4A—C9A—C8A −175.4 (4) C5A—C4A—C3—C4B 33 (7)
C9B—C4B—C5B—C6 −3(2) C5B—C4B—C3—N1 107.3 (15)
C3—C4B—C5B—C6 171.7 (11) C9B—C4B—C3—N1 −78.2 (17)
C4B—C5B—C6—C7B 2.3 (17) C5B—C4B—C3—C2 −67.5 (19)
C5B—C6—C7B—C8B 0.3 (14) C9B—C4B—C3—C2 107.0 (14)
C5B—C6—C7B—O3B −178.5 (8) C5B—C4B—C3—C4A −163 (9)
C17B—O3B—C7B—C6 166.9 (8) C9B—C4B—C3—C4A 11 (6)
C17B—O3B—C7B—C8B −11.8 (12) C3—N1—C10—C15 118.83 (18)
C6—C7B—C8B—C9B −2.2 (14) N2—N1—C10—C15 −68.1 (2)
O3B—C7B—C8B—C9B 176.4 (7) C3—N1—C10—C11 −116.88 (18)
C7B—C8B—C9B—C4B 1.6 (16) N2—N1—C10—C11 56.22 (19)
C5B—C4B—C9B—C8B 1(2) N1—C10—C11—C12 179.54 (13)
C3—C4B—C9B—C8B −173.8 (11) C15—C10—C11—C12 −55.96 (19)
C3—N1—N2—C1 0.0 (2) C10—C11—C12—C13 55.8 (2)
C10—N1—N2—C1 −174.16 (16) C11—C12—C13—C14 −56.0 (2)
N1—N2—C1—C2 0.2 (2) C12—C13—C14—C15 56.4 (2)
N2—C1—C2—C3 −0.4 (2) N1—C10—C15—C14 −179.95 (15)
N2—C1—C2—C16 −179.98 (19) C11—C10—C15—C14 56.3 (2)
N2—N1—C3—C2 −0.20 (19) C13—C14—C15—C10 −56.4 (2)
C10—N1—C3—C2 173.21 (16) C3—C2—C16—O1 3.2 (3)
N2—N1—C3—C4A 174.3 (3) C1—C2—C16—O1 −177.3 (2)
C10—N1—C3—C4A −12.2 (4) C3—C2—C16—O2 −176.26 (18)
N2—N1—C3—C4B −176.1 (6) C1—C2—C16—O2 3.3 (3)
C10—N1—C3—C4B −2.7 (6)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H1O2···O1i 0.91 1.73 2.640 (2) 174

Symmetry codes: (i) −x, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6534).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  5. Fun, H.-K., Quah, C. K., Chandrakantha, B., Isloor, A. M. & Shetty, P. (2010a). Acta Cryst. E66, o2228. [DOI] [PMC free article] [PubMed]
  6. Fun, H.-K., Quah, C. K., Chandrakantha, B., Isloor, A. M. & Shetty, P. (2010b). Acta Cryst. E66, o2282–o2283. [DOI] [PMC free article] [PubMed]
  7. Fun, H.-K., Quah, C. K., Malladi, S., Hebbar, R. & Isloor, A. M. (2011). Acta Cryst. E67, o3105. [DOI] [PMC free article] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811050872/hb6534sup1.cif

e-67-o3513-sup1.cif (23KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811050872/hb6534Isup2.hkl

e-67-o3513-Isup2.hkl (224.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811050872/hb6534Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES