Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 30;67(Pt 12):o3515. doi: 10.1107/S1600536811051142

N-Benzoyl-3-nitro­benzene­sulfonamide

P A Suchetan a, Sabine Foro b, B Thimme Gowda a,*
PMCID: PMC3239136  PMID: 22199984

Abstract

In the title compound, C13H10N2O5S, the dihedral angle between the phenyl and benzene rings is 86.7 (1)°. In the crystal, mol­ecules are linked into zigzag C(4) chains running along the b axis via N—H⋯O hydrogen bonds.

Related literature

For our studies on the effects of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Bowes et al. (2003); Gowda et al. (2004), on N-(ar­yl)-methane­sulfonamides, see: Jayalakshmi & Gowda (2004), on N-(ar­yl)-aryl­sulfonamides, see: Gowda et al. (2003), on N-(substitutedbenzo­yl)-aryl­sulfonamides, see: Suchetan et al. (2010) and on N-chloro­aryl­amides, see: Gowda et al. (1996).graphic file with name e-67-o3515-scheme1.jpg

Experimental

Crystal data

  • C13H10N2O5S

  • M r = 306.29

  • Monoclinic, Inline graphic

  • a = 11.546 (1) Å

  • b = 5.0302 (5) Å

  • c = 23.387 (2) Å

  • β = 93.69 (1)°

  • V = 1355.5 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 293 K

  • 0.48 × 0.20 × 0.16 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) T min = 0.884, T max = 0.959

  • 4929 measured reflections

  • 2768 independent reflections

  • 2225 reflections with I > 2σ(I)

  • R int = 0.013

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.093

  • S = 1.05

  • 2768 reflections

  • 193 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811051142/bt5732sup1.cif

e-67-o3515-sup1.cif (17.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811051142/bt5732Isup2.hkl

e-67-o3515-Isup2.hkl (135.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811051142/bt5732Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.81 (2) 2.15 (2) 2.954 (2) 172 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

BTG thanks the University Grants Commission, Government of India, New Delhi, for a special grant under the UGC–BSR one-time grant to faculty.

supplementary crystallographic information

Comment

Diaryl acylsulfonamides are known as potent antitumor agents against a broad spectrum of human tumor xenografts in nude mice. As part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Bowes et al., 2003; Gowda et al., 2004), N-(aryl)-methanesulfonamides (Jayalakshmi & Gowda, 2004), N-(aryl)-arylsulfonamides (Gowda et al., 2003); N-(substitutedbenzoyl)-arylsulfonamides (Suchetan et al., 2010) and N-chloro-arylsulfonamides (Gowda et al., 1996), in the present work, the crystal structure of N-(benzoyl)- 3-nitrobenzenesulfonamide (I) has been determined (Fig.1).

The conformations of the N—H and C=O bonds in the C—SO2—NH—C(O) segment are anti to each other (Fig.1), similar to that observed in N-(benzoyl)-2-methylbenzenesulfonamide (II)(Suchetan et al., 2010). Further, The N—C bond in the C—SO2—NH—C segment has gauche torsion with respect to the S═O bonds. In (I), the conformation between the N—H bond and the meta-nitro group in the sulfonyl benzene ring is syn.

The molecule is twisted at the S atom with the torsional angle of -62.80 (17)°, compared to the value of 68.8 (4)° in (II).

The dihedral angle between the sulfonyl benzene ring and the —SO2—NH—C—O segment is 79.2 (1)°, compared to the value of 84.8 (1)° in (II). Furthermore, the dihedral angle between the sulfonyl and the benzoyl benzene rings is 86.7 (1)°, compared to the value of 73.9 (1)° in (II).

The packing of molecules linked by of N—H···O(S) hydrogen bonds(Table 1) is shown in Fig. 2.

Experimental

The title compound was prepared by refluxing a mixture of benzoic acid (0.02 mole), 3-nitrobenzenesulfonamide (0.02 mole) and excess phosphorous oxy chloride for 3 h on a water bath. The resultant mixture was cooled and poured into crushed ice. The solid, N-(benzoyl)-3-nitrobenzenesulfonamide, obtained was filtered, washed thoroughly with water and then dissolved in sodium bicarbonate solution. The compound was later reprecipitated by acidifying the filtered solution with dilute HCl. It was filtered, dried and recrystallized.

Rod like colourless single crystals of the title compound used in X-ray diffraction studies were obtained by slow evaporation of its toluene solution at room temperature.

Refinement

The H atom of the NH group was located in a difference map and later restrained to N—H = 0.86 (2) %A. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93 Å. All H atoms were refined with isotropic displacement parameters set to 1.2 times of the Ueq of the parent atom.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Molecular packing in the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C13H10N2O5S F(000) = 632
Mr = 306.29 Dx = 1.501 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1881 reflections
a = 11.546 (1) Å θ = 2.6–27.8°
b = 5.0302 (5) Å µ = 0.26 mm1
c = 23.387 (2) Å T = 293 K
β = 93.69 (1)° Rod, colourless
V = 1355.5 (2) Å3 0.48 × 0.20 × 0.16 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector 2768 independent reflections
Radiation source: fine-focus sealed tube 2225 reflections with I > 2σ(I)
graphite Rint = 0.013
Rotation method data acquisition using ω and phi scans θmax = 26.4°, θmin = 2.6°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −9→14
Tmin = 0.884, Tmax = 0.959 k = −6→3
4929 measured reflections l = −24→29

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0313P)2 + 0.8565P] where P = (Fo2 + 2Fc2)/3
2768 reflections (Δ/σ)max = 0.002
193 parameters Δρmax = 0.27 e Å3
1 restraint Δρmin = −0.33 e Å3

Special details

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.23224 (16) 0.3781 (4) 0.79448 (8) 0.0329 (4)
C2 0.27622 (17) 0.5700 (4) 0.83229 (8) 0.0363 (4)
H2 0.3546 0.6143 0.8346 0.044*
C3 0.19897 (18) 0.6929 (4) 0.86639 (8) 0.0405 (5)
C4 0.08278 (19) 0.6308 (5) 0.86402 (9) 0.0496 (6)
H4 0.0329 0.7184 0.8874 0.059*
C5 0.04152 (19) 0.4376 (5) 0.82661 (10) 0.0514 (6)
H5 −0.0367 0.3923 0.8249 0.062*
C6 0.11592 (18) 0.3100 (4) 0.79148 (9) 0.0431 (5)
H6 0.0879 0.1795 0.7661 0.052*
C7 0.25229 (17) 0.4841 (4) 0.65601 (8) 0.0357 (4)
C8 0.27975 (17) 0.6755 (4) 0.61050 (8) 0.0374 (4)
C9 0.3905 (2) 0.7661 (6) 0.60253 (10) 0.0608 (7)
H9 0.4533 0.6984 0.6248 0.073*
C10 0.4082 (3) 0.9574 (7) 0.56151 (11) 0.0812 (10)
H10 0.4828 1.0197 0.5567 0.097*
C11 0.3168 (3) 1.0554 (6) 0.52804 (11) 0.0782 (9)
H11 0.3290 1.1853 0.5008 0.094*
C12 0.2079 (3) 0.9630 (6) 0.53456 (11) 0.0722 (8)
H12 0.1460 1.0284 0.5113 0.087*
C13 0.1884 (2) 0.7726 (5) 0.57538 (9) 0.0557 (6)
H13 0.1137 0.7094 0.5793 0.067*
N1 0.34339 (14) 0.4120 (3) 0.69483 (7) 0.0339 (4)
H1N 0.4037 (15) 0.495 (4) 0.6984 (9) 0.041*
N2 0.2428 (2) 0.9045 (4) 0.90566 (8) 0.0564 (5)
O1 0.43954 (12) 0.2116 (3) 0.77920 (6) 0.0501 (4)
O2 0.27356 (14) −0.0250 (3) 0.73033 (6) 0.0518 (4)
O3 0.15637 (12) 0.3948 (3) 0.66098 (7) 0.0551 (4)
O4 0.34651 (19) 0.9464 (4) 0.90974 (9) 0.0856 (7)
O5 0.17200 (19) 1.0273 (4) 0.93168 (8) 0.0857 (7)
S1 0.32724 (4) 0.21577 (10) 0.74967 (2) 0.03588 (14)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0396 (10) 0.0295 (9) 0.0295 (9) 0.0041 (8) 0.0026 (8) 0.0043 (8)
C2 0.0412 (11) 0.0323 (10) 0.0353 (10) 0.0011 (8) 0.0017 (8) 0.0028 (8)
C3 0.0548 (12) 0.0338 (11) 0.0325 (10) 0.0074 (9) 0.0005 (9) 0.0014 (9)
C4 0.0496 (13) 0.0580 (14) 0.0417 (12) 0.0193 (11) 0.0074 (10) 0.0023 (11)
C5 0.0377 (11) 0.0672 (16) 0.0496 (13) 0.0024 (11) 0.0051 (10) 0.0056 (12)
C6 0.0444 (11) 0.0441 (12) 0.0404 (11) −0.0023 (10) 0.0006 (9) 0.0018 (10)
C7 0.0380 (10) 0.0349 (10) 0.0337 (10) −0.0010 (9) −0.0007 (8) −0.0030 (8)
C8 0.0452 (11) 0.0374 (11) 0.0295 (9) 0.0010 (9) 0.0019 (8) −0.0013 (8)
C9 0.0549 (14) 0.0849 (19) 0.0418 (12) −0.0150 (13) −0.0014 (10) 0.0196 (13)
C10 0.088 (2) 0.103 (2) 0.0523 (15) −0.0375 (19) 0.0038 (14) 0.0266 (17)
C11 0.122 (3) 0.0672 (19) 0.0459 (14) −0.0052 (18) 0.0111 (16) 0.0204 (14)
C12 0.091 (2) 0.079 (2) 0.0462 (14) 0.0293 (17) 0.0040 (14) 0.0187 (14)
C13 0.0570 (14) 0.0676 (16) 0.0423 (12) 0.0123 (12) 0.0013 (10) 0.0089 (12)
N1 0.0338 (8) 0.0331 (9) 0.0349 (8) −0.0041 (7) 0.0012 (7) 0.0023 (7)
N2 0.0812 (15) 0.0457 (11) 0.0419 (11) 0.0100 (11) 0.0005 (10) −0.0078 (9)
O1 0.0453 (8) 0.0582 (10) 0.0465 (8) 0.0199 (7) −0.0001 (7) 0.0066 (8)
O2 0.0786 (11) 0.0269 (8) 0.0513 (9) −0.0036 (7) 0.0143 (8) −0.0034 (7)
O3 0.0397 (8) 0.0684 (11) 0.0561 (9) −0.0162 (8) −0.0053 (7) 0.0129 (9)
O4 0.0849 (15) 0.0825 (15) 0.0889 (15) −0.0178 (12) 0.0012 (12) −0.0401 (12)
O5 0.1106 (16) 0.0775 (14) 0.0689 (12) 0.0278 (12) 0.0056 (11) −0.0327 (11)
S1 0.0445 (3) 0.0285 (2) 0.0350 (3) 0.0064 (2) 0.0045 (2) 0.0023 (2)

Geometric parameters (Å, °)

C1—C2 1.383 (3) C8—C13 1.383 (3)
C1—C6 1.383 (3) C9—C10 1.383 (3)
C1—S1 1.7654 (19) C9—H9 0.9300
C2—C3 1.380 (3) C10—C11 1.365 (4)
C2—H2 0.9300 C10—H10 0.9300
C3—C4 1.375 (3) C11—C12 1.357 (4)
C3—N2 1.474 (3) C11—H11 0.9300
C4—C5 1.372 (3) C12—C13 1.381 (4)
C4—H4 0.9300 C12—H12 0.9300
C5—C6 1.384 (3) C13—H13 0.9300
C5—H5 0.9300 N1—S1 1.6387 (17)
C6—H6 0.9300 N1—H1N 0.810 (15)
C7—O3 1.208 (2) N2—O4 1.213 (3)
C7—N1 1.392 (2) N2—O5 1.219 (3)
C7—C8 1.485 (3) O1—S1 1.4294 (15)
C8—C9 1.382 (3) O2—S1 1.4209 (15)
C2—C1—C6 121.36 (18) C10—C9—H9 119.9
C2—C1—S1 119.06 (15) C11—C10—C9 120.4 (3)
C6—C1—S1 119.58 (15) C11—C10—H10 119.8
C3—C2—C1 117.24 (19) C9—C10—H10 119.8
C3—C2—H2 121.4 C12—C11—C10 120.0 (3)
C1—C2—H2 121.4 C12—C11—H11 120.0
C4—C3—C2 122.7 (2) C10—C11—H11 120.0
C4—C3—N2 119.0 (2) C11—C12—C13 120.6 (3)
C2—C3—N2 118.3 (2) C11—C12—H12 119.7
C5—C4—C3 119.0 (2) C13—C12—H12 119.7
C5—C4—H4 120.5 C12—C13—C8 120.2 (2)
C3—C4—H4 120.5 C12—C13—H13 119.9
C4—C5—C6 120.2 (2) C8—C13—H13 119.9
C4—C5—H5 119.9 C7—N1—S1 123.21 (13)
C6—C5—H5 119.9 C7—N1—H1N 122.8 (16)
C1—C6—C5 119.5 (2) S1—N1—H1N 111.6 (15)
C1—C6—H6 120.2 O4—N2—O5 124.3 (2)
C5—C6—H6 120.2 O4—N2—C3 118.2 (2)
O3—C7—N1 119.97 (18) O5—N2—C3 117.5 (2)
O3—C7—C8 123.34 (18) O2—S1—O1 120.32 (10)
N1—C7—C8 116.68 (17) O2—S1—N1 109.49 (9)
C9—C8—C13 118.7 (2) O1—S1—N1 103.98 (9)
C9—C8—C7 123.57 (19) O2—S1—C1 107.95 (10)
C13—C8—C7 117.71 (19) O1—S1—C1 107.39 (9)
C8—C9—C10 120.1 (2) N1—S1—C1 107.00 (9)
C8—C9—H9 119.9
C6—C1—C2—C3 −0.8 (3) C11—C12—C13—C8 0.6 (4)
S1—C1—C2—C3 179.74 (14) C9—C8—C13—C12 −2.2 (4)
C1—C2—C3—C4 0.3 (3) C7—C8—C13—C12 176.1 (2)
C1—C2—C3—N2 −177.96 (17) O3—C7—N1—S1 −2.2 (3)
C2—C3—C4—C5 0.5 (3) C8—C7—N1—S1 176.65 (14)
N2—C3—C4—C5 178.7 (2) C4—C3—N2—O4 175.8 (2)
C3—C4—C5—C6 −0.7 (3) C2—C3—N2—O4 −5.9 (3)
C2—C1—C6—C5 0.6 (3) C4—C3—N2—O5 −4.7 (3)
S1—C1—C6—C5 −179.95 (16) C2—C3—N2—O5 173.6 (2)
C4—C5—C6—C1 0.2 (3) C7—N1—S1—O2 53.95 (18)
O3—C7—C8—C9 −176.0 (2) C7—N1—S1—O1 −176.27 (16)
N1—C7—C8—C9 5.2 (3) C7—N1—S1—C1 −62.80 (17)
O3—C7—C8—C13 5.8 (3) C2—C1—S1—O2 160.32 (15)
N1—C7—C8—C13 −173.01 (19) C6—C1—S1—O2 −19.17 (18)
C13—C8—C9—C10 2.3 (4) C2—C1—S1—O1 29.21 (18)
C7—C8—C9—C10 −175.9 (2) C6—C1—S1—O1 −150.28 (16)
C8—C9—C10—C11 −1.0 (5) C2—C1—S1—N1 −81.92 (16)
C9—C10—C11—C12 −0.7 (5) C6—C1—S1—N1 98.59 (17)
C10—C11—C12—C13 0.8 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O1i 0.81 (2) 2.15 (2) 2.954 (2) 172 (2)

Symmetry codes: (i) −x+1, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5732).

References

  1. Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1–o3. [DOI] [PubMed]
  2. Gowda, B. T., Dou, S. Q. & Weiss, A. (1996). Z. Naturforsch. Teil A, 51, 627–636.
  3. Gowda, B. T., Jyothi, K., Kozisek, J. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 656–660.
  4. Gowda, B. T., Svoboda, I. & Fuess, H. (2004). Z. Naturforsch. Teil A, 59, 845–852.
  5. Jayalakshmi, K. L. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 491–500.
  6. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010). Acta Cryst. E66, o1024. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811051142/bt5732sup1.cif

e-67-o3515-sup1.cif (17.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811051142/bt5732Isup2.hkl

e-67-o3515-Isup2.hkl (135.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811051142/bt5732Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES