Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 30;67(Pt 12):o3518. doi: 10.1107/S1600536811050902

(E)-5-[(2-Hy­droxy-3-meth­oxy­benzyl­idene)amino]-1,3,4-thia­diazole-2(3H)-thione

Hadi Kargar a,*, Reza Kia b
PMCID: PMC3239138  PMID: 22199986

Abstract

In the title compound, C10H9N3O2S2, the dihedral angle between the benzene ring and the five-membered ring is 1.54 (13)°. An intra­molecular O—H⋯N hydrogen bond makes an S(6) ring. In the crystal, mol­ecules are linked together through bifurcated N—H⋯(O,O) hydrogen bonds having R 1 2(5) ring motifs, forming chains along the b axis. The crystal structure also features π–π inter­actions, with centroid–centroid distances of 3.699 (3)–3.767 (3) Å.

Related literature

For standard bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the biological versatility of thione ligands, see, for example: Kumar et al. (1988); Yadav et al. (1989). For related structures, see: Zhang (2003); Kargar et al. (2011, 2011a , 2011b ). graphic file with name e-67-o3518-scheme1.jpg

Experimental

Crystal data

  • C10H9N3O2S2

  • M r = 267.32

  • Monoclinic, Inline graphic

  • a = 7.432 (5) Å

  • b = 14.993 (5) Å

  • c = 10.853 (5) Å

  • β = 101.738 (5)°

  • V = 1184.0 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.44 mm−1

  • T = 291 K

  • 0.25 × 0.21 × 0.11 mm

Data collection

  • Stoe IPDS 2T Image Plate diffractometer

  • Absorption correction: multi-scan [MULABS (Blessing, 1995) in PLATON (Spek, 2009)] T min = 0.898, T max = 1.000

  • 9012 measured reflections

  • 3147 independent reflections

  • 1530 reflections with I > 2σ(I)

  • R int = 0.075

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057

  • wR(F 2) = 0.079

  • S = 0.92

  • 3147 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: X-AREA (Stoe & Cie, 2009); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811050902/fj2484sup1.cif

e-67-o3518-sup1.cif (16.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811050902/fj2484Isup2.hkl

e-67-o3518-Isup2.hkl (154.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811050902/fj2484Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.76 1.97 2.633 (3) 146
N3—H3⋯O1i 0.86 2.23 2.919 (3) 138
N3—H3⋯O2i 0.86 2.29 3.034 (3) 146

Symmetry code: (i) Inline graphic.

Acknowledgments

HK thanks PNU for the financial support.

supplementary crystallographic information

Comment

The biological versatility of compounds incorporating a thiadiazole ring is well known (Kumar et al., 1988; Yadav et al., 1989).

The asymmetric unit of the title compound, Fig. 1, comprises a thione-Schiff base ligand. The bond lengths (Allen et al., 1987) and angles are within the normal ranges and are comparable to the related structure (Zhang, 2003; Kargar et al., 2011a,b; Kargar & Kia, 2011).

The dihedral angle between the benzene ring and the five-membered ring is 1.54 (13)°. The intramolecular O—H···N hydrogen bond makes S(6) ring motif (Bernstein et al., 1995). In the crystal packing molecules are linked together through bifurctaed N—H···O hydrogen bonds with R21(5) ring motifs (Bernstein et al., 1995), forming one-dimensional extended chains along the b axis. The crystal structure is further stabilized by the intermolecular π-π interactions [[Cg1···Cg2i = 3.767 (3)Å, (i) -x, 1 - y, 1 -z; Cg1···Cg2ii = 3.699 (3)Å, (ii) 1 - x, 1 - y, 1 - z; Cg1 and Cg2 are centroids of S(1)/C(8)/N(2)/N(3)/C(9) and C1–C6 rings, respectively].

Experimental

The title compound was synthesized by adding 3-methoxy-salicylaldehyde (1 mmol) to a solution of 5-aminothiophene-2-thiol (1 mmol) in ethanol (30 ml). The mixture was refluxed with stirring for half an hour. The resultant solution was filtered. Yellow single crystals of the title compound suitable for X-ray structure determination were recrystallized from ethanol by slow evaporation of the solvents at room temperature over several days.

Refinement

All hydrogen atoms were positioned geometrically with C—H = 0.93-0.96 Å and included in a riding model approximation with Uiso (H) = 1.2 or 1.5 Ueq (C). A rotating group model was applied to the methyl group.

Figures

Fig. 1.

Fig. 1.

The ORTEP plot of the title compound, showing 40% probability displacement ellipsoids and the atomic numbering. The dashed lines show the intermolecular interaction.

Fig. 2.

Fig. 2.

The packing diagram of the title compound viewed down the c-axis showing linkning of molecules through the intermolecular N—H···O intearctions R21(5) ring motifs, forming one-dimensional extended chains along the b-axis. Only the H atoms involved the hydrogen bonds are shown. The dashed lines show the intermolecular interactions.

Crystal data

C10H9N3O2S2 F(000) = 552
Mr = 267.32 Dx = 1.500 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybc Cell parameters from 2780 reflections
a = 7.432 (5) Å θ = 2.5–27.4°
b = 14.993 (5) Å µ = 0.44 mm1
c = 10.853 (5) Å T = 291 K
β = 101.738 (5)° Block, yellow
V = 1184.0 (10) Å3 0.25 × 0.21 × 0.11 mm
Z = 4

Data collection

Stoe IPDS 2T Image Plate diffractometer 3147 independent reflections
Radiation source: fine-focus sealed tube 1530 reflections with I > 2σ(I)
graphite Rint = 0.075
Detector resolution: 0.15 mm pixels mm-1 θmax = 29.0°, θmin = 2.4°
ω scans h = −9→10
Absorption correction: multi-scan [MULABS (Blessing, 1995) in PLATON (Spek, 2009)] k = −20→19
Tmin = 0.898, Tmax = 1.000 l = −14→14
9012 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079 H-atom parameters constrained
S = 0.92 w = 1/[σ2(Fo2) + (0.0235P)2] where P = (Fo2 + 2Fc2)/3
3147 reflections (Δ/σ)max = 0.001
155 parameters Δρmax = 0.21 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.21750 (10) 0.70390 (4) 0.52967 (6) 0.04780 (19)
S2 0.26803 (11) 0.88098 (5) 0.66246 (8) 0.0669 (3)
O1 0.3794 (2) 0.35277 (10) 0.59426 (14) 0.0493 (5)
H1 0.3815 0.4009 0.6167 0.074*
O2 0.3399 (3) 0.19524 (12) 0.50192 (17) 0.0610 (5)
N1 0.3081 (3) 0.52471 (12) 0.57179 (17) 0.0366 (5)
N2 0.4094 (3) 0.63027 (13) 0.72724 (18) 0.0436 (5)
N3 0.3970 (3) 0.72004 (13) 0.74725 (18) 0.0471 (6)
H3 0.4552 0.7361 0.8202 0.056*
C1 0.2778 (3) 0.34679 (16) 0.4758 (2) 0.0380 (6)
C2 0.2551 (4) 0.26105 (18) 0.4235 (2) 0.0437 (7)
C3 0.1578 (4) 0.2506 (2) 0.3031 (3) 0.0561 (8)
H3A 0.1432 0.1940 0.2674 0.067*
C4 0.0809 (4) 0.3235 (2) 0.2342 (3) 0.0604 (8)
H4A 0.0156 0.3155 0.1523 0.073*
C5 0.0996 (4) 0.40713 (18) 0.2846 (2) 0.0528 (7)
H5A 0.0462 0.4556 0.2375 0.063*
C6 0.1990 (3) 0.41983 (17) 0.4071 (2) 0.0365 (6)
C7 0.2189 (3) 0.50812 (16) 0.4597 (2) 0.0395 (6)
H7A 0.1647 0.5555 0.4103 0.047*
C8 0.3194 (3) 0.61176 (16) 0.6153 (2) 0.0351 (6)
C9 0.3028 (4) 0.77222 (16) 0.6575 (2) 0.0438 (6)
C10 0.2996 (5) 0.10417 (18) 0.4652 (3) 0.0769 (10)
H10A 0.3550 0.0653 0.5326 0.115*
H10B 0.3481 0.0910 0.3917 0.115*
H10C 0.1690 0.0953 0.4468 0.115*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0536 (5) 0.0348 (4) 0.0529 (4) 0.0065 (3) 0.0058 (3) 0.0043 (3)
S2 0.0708 (6) 0.0335 (4) 0.0980 (6) 0.0065 (4) 0.0208 (5) −0.0043 (4)
O1 0.0629 (13) 0.0321 (10) 0.0487 (11) 0.0050 (9) 0.0013 (9) 0.0003 (7)
O2 0.0684 (14) 0.0303 (11) 0.0841 (14) 0.0019 (10) 0.0148 (11) −0.0055 (9)
N1 0.0394 (13) 0.0303 (12) 0.0397 (12) 0.0015 (10) 0.0071 (10) −0.0017 (9)
N2 0.0455 (14) 0.0333 (13) 0.0497 (13) 0.0026 (10) 0.0041 (11) −0.0036 (10)
N3 0.0482 (14) 0.0407 (14) 0.0499 (13) −0.0017 (11) 0.0044 (11) −0.0094 (11)
C1 0.0352 (15) 0.0415 (15) 0.0389 (13) −0.0042 (12) 0.0112 (12) −0.0040 (12)
C2 0.0428 (17) 0.0374 (16) 0.0540 (17) −0.0030 (13) 0.0175 (14) −0.0048 (13)
C3 0.062 (2) 0.0465 (19) 0.0655 (19) −0.0168 (15) 0.0269 (16) −0.0203 (15)
C4 0.067 (2) 0.064 (2) 0.0484 (16) −0.0238 (18) 0.0068 (15) −0.0136 (16)
C5 0.0549 (19) 0.0518 (19) 0.0478 (17) −0.0114 (15) 0.0013 (14) 0.0021 (13)
C6 0.0338 (15) 0.0358 (15) 0.0399 (14) −0.0044 (12) 0.0074 (12) 0.0008 (11)
C7 0.0374 (16) 0.0366 (16) 0.0449 (15) 0.0006 (12) 0.0094 (13) 0.0077 (12)
C8 0.0344 (14) 0.0309 (14) 0.0414 (14) 0.0033 (11) 0.0108 (12) 0.0054 (11)
C9 0.0390 (15) 0.0376 (15) 0.0578 (16) −0.0019 (13) 0.0167 (13) −0.0025 (13)
C10 0.083 (3) 0.0348 (18) 0.115 (3) −0.0048 (17) 0.026 (2) −0.0109 (18)

Geometric parameters (Å, °)

S1—C9 1.737 (3) C1—C2 1.401 (3)
S1—C8 1.749 (2) C2—C3 1.369 (3)
S2—C9 1.654 (3) C3—C4 1.381 (4)
O1—C1 1.355 (3) C3—H3A 0.9300
O1—H1 0.7607 C4—C5 1.364 (3)
O2—C2 1.370 (3) C4—H4A 0.9300
O2—C10 1.437 (3) C5—C6 1.397 (3)
N1—C7 1.286 (3) C5—H5A 0.9300
N1—C8 1.385 (3) C6—C7 1.437 (3)
N2—C8 1.292 (3) C7—H7A 0.9300
N2—N3 1.369 (3) C10—H10A 0.9600
N3—C9 1.332 (3) C10—H10B 0.9600
N3—H3 0.8561 C10—H10C 0.9600
C1—C6 1.386 (3)
C9—S1—C8 89.62 (13) C4—C5—H5A 120.1
C1—O1—H1 109.8 C6—C5—H5A 120.1
C2—O2—C10 118.0 (2) C1—C6—C5 119.2 (2)
C7—N1—C8 119.3 (2) C1—C6—C7 121.1 (2)
C8—N2—N3 108.7 (2) C5—C6—C7 119.7 (2)
C9—N3—N2 120.2 (2) N1—C7—C6 123.0 (2)
C9—N3—H3 127.1 N1—C7—H7A 118.5
N2—N3—H3 112.7 C6—C7—H7A 118.5
O1—C1—C6 123.5 (2) N2—C8—N1 120.5 (2)
O1—C1—C2 116.3 (2) N2—C8—S1 114.54 (18)
C6—C1—C2 120.3 (2) N1—C8—S1 125.01 (18)
C3—C2—O2 126.7 (3) N3—C9—S2 128.1 (2)
C3—C2—C1 119.3 (3) N3—C9—S1 106.85 (18)
O2—C2—C1 114.0 (2) S2—C9—S1 125.01 (17)
C2—C3—C4 120.4 (3) O2—C10—H10A 109.5
C2—C3—H3A 119.8 O2—C10—H10B 109.5
C4—C3—H3A 119.8 H10A—C10—H10B 109.5
C5—C4—C3 120.9 (3) O2—C10—H10C 109.5
C5—C4—H4A 119.5 H10A—C10—H10C 109.5
C3—C4—H4A 119.5 H10B—C10—H10C 109.5
C4—C5—C6 119.9 (3)
C8—N2—N3—C9 0.0 (3) C4—C5—C6—C1 0.1 (4)
C10—O2—C2—C3 −11.4 (4) C4—C5—C6—C7 179.8 (2)
C10—O2—C2—C1 169.9 (2) C8—N1—C7—C6 −179.6 (2)
O1—C1—C2—C3 −178.4 (2) C1—C6—C7—N1 −0.5 (4)
C6—C1—C2—C3 1.3 (4) C5—C6—C7—N1 179.8 (2)
O1—C1—C2—O2 0.4 (3) N3—N2—C8—N1 −179.1 (2)
C6—C1—C2—O2 −179.9 (2) N3—N2—C8—S1 0.5 (2)
O2—C2—C3—C4 −179.3 (3) C7—N1—C8—N2 −179.5 (2)
C1—C2—C3—C4 −0.7 (4) C7—N1—C8—S1 1.0 (3)
C2—C3—C4—C5 −0.3 (4) C9—S1—C8—N2 −0.61 (19)
C3—C4—C5—C6 0.6 (4) C9—S1—C8—N1 178.9 (2)
O1—C1—C6—C5 178.7 (2) N2—N3—C9—S2 179.02 (18)
C2—C1—C6—C5 −1.0 (4) N2—N3—C9—S1 −0.4 (3)
O1—C1—C6—C7 −1.0 (4) C8—S1—C9—N3 0.53 (18)
C2—C1—C6—C7 179.3 (2) C8—S1—C9—S2 −178.93 (18)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···N1 0.76 1.97 2.633 (3) 146.
N3—H3···O1i 0.86 2.23 2.919 (3) 138.
N3—H3···O2i 0.86 2.29 3.034 (3) 146.

Symmetry codes: (i) −x+1, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2484).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [DOI] [PubMed]
  4. Kargar, H. & Kia, R. (2011). Acta Cryst. E67, o3437. [DOI] [PMC free article] [PubMed]
  5. Kargar, H., Kia, R. & Tahir, M. N. (2011a). Acta Cryst. E67, o3311. [DOI] [PMC free article] [PubMed]
  6. Kargar, H., Kia, R. & Tahir, M. N. (2011b). Acta Cryst. E67, o3436. [DOI] [PMC free article] [PubMed]
  7. Kumar, R., Giri S. & Nizamuddin (1988). J. Indian Chem. Soc. 65, 572–573.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  10. Stoe & Cie (2009). X-AREA Stoe & Cie, Darmstadt, Germany.
  11. Yadav, L. D. S., Shukla, K. N. & Singh, H. (1989). Indian J. Chem. Sect B, 28, 78–80.
  12. Zhang, Y.-X. (2003). Acta Cryst. E59, o581–o582.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811050902/fj2484sup1.cif

e-67-o3518-sup1.cif (16.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811050902/fj2484Isup2.hkl

e-67-o3518-Isup2.hkl (154.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811050902/fj2484Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES