Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1986 Jul;83(14):5306–5310. doi: 10.1073/pnas.83.14.5306

Unregulated proliferation of primitive chronic myeloid leukemia progenitors in the presence of normal marrow adherent cells.

A C Eaves, J D Cashman, L A Gaboury, D K Kalousek, C J Eaves
PMCID: PMC323940  PMID: 3460093

Abstract

Previous studies have shown that Philadelphia (Ph1) chromosome-positive chronic myeloid leukemia (CML) results from the abnormal expansion at the pluripotent stem cell level of a single clone of hemopoietic cells. Although it seems likely that this is related to the heightened proliferative activity characteristic of primitive CML progenitor cell types, the underlying mechanism is unknown. In this report we show that either normal or CML peripheral blood progenitors can be maintained on preestablished normal marrow adherent layers for periods of 1-2 months. Under these conditions numbers of both normal and neoplastic progenitors are usually higher in the adherent layer than in the nonadherent fraction. Moreover, the number of primitive progenitors of high proliferative potential present in the adherent layer is sufficient to allow their cycling status to be determined. Such measurements demonstrate that primitive normal progenitors of blood origin, when cultured in the presence of a preestablished adherent marrow feeder layer, go in and out of cycle after each medium change but in the absence of a feeder layer remain continuously in cycle. In contrast, primitive CML progenitors of either blood or marrow origin cycle continuously regardless of the presence or absence of an adherent feeder layer. We suggest that early expansion of the CML clone is related to an ability of the neoplastic stem cells to ignore or overcome a negative regulatory signal produced by nonneoplastic adherent marrow cells whose normal function is to maintain the stem cell reserve in a quiescent state.

Full text

PDF
5306

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BECKER A. J., MCCULLOCH E. A., SIMINOVITCH L., TILL J. E. THE EFFECT OF DIFFERING DEMANDS FOR BLOOD CELL PRODUCTION ON DNA SYNTHESIS BY HEMOPOIETIC COLONY-FORMING CELLS OF MICE. Blood. 1965 Sep;26:296–308. [PubMed] [Google Scholar]
  2. Baker M. A., Taub R. N., Kanani A., Brockhausen I., Hindenburg A. Increased activity of a specific sialyltransferase in chronic myelogenous leukemia. Blood. 1985 Nov;66(5):1068–1071. [PubMed] [Google Scholar]
  3. Cashman J., Eaves A. C., Eaves C. J. Regulated proliferation of primitive hematopoietic progenitor cells in long-term human marrow cultures. Blood. 1985 Oct;66(4):1002–1005. [PubMed] [Google Scholar]
  4. Coulombel L., Eaves A. C., Eaves C. J. Enzymatic treatment of long-term human marrow cultures reveals the preferential location of primitive hemopoietic progenitors in the adherent layer. Blood. 1983 Aug;62(2):291–297. [PubMed] [Google Scholar]
  5. Coulombel L., Eaves C. J., Dubé I. D., Kalousek D. K., Eaves A. C. Variable persistence of leukemic progenitor cells in long-term CML and AML marrow cultures. Kroc Found Ser. 1984;18:243–254. [PubMed] [Google Scholar]
  6. Coulombel L., Kalousek D. K., Eaves C. J., Gupta C. M., Eaves A. C. Long-term marrow culture reveals chromosomally normal hematopoietic progenitor cells in patients with Philadelphia chromosome-positive chronic myelogenous leukemia. N Engl J Med. 1983 Jun 23;308(25):1493–1498. doi: 10.1056/NEJM198306233082502. [DOI] [PubMed] [Google Scholar]
  7. Dubé I. D., Eaves C. J., Kalousek D. K., Eaves A. C. A method for obtaining high quality chromosome preparations from single hemopoietic colonies on a routine basis. Cancer Genet Cytogenet. 1981 Oct;4(2):157–168. doi: 10.1016/0165-4608(81)90080-7. [DOI] [PubMed] [Google Scholar]
  8. Dubé I. D., Gupta C. M., Kalousek D. K., Eaves C. J., Eaves A. C. Cytogenetic studies of early myeloid progenitor compartments in Ph1-positive chronic myeloid leukaemia (CML). I. Persistence of Ph1-negative committed progenitors that are suppressed from differentiating in vivo. Br J Haematol. 1984 Apr;56(4):633–644. doi: 10.1111/j.1365-2141.1984.tb02187.x. [DOI] [PubMed] [Google Scholar]
  9. Dubé I. D., Kalousek D. K., Coulombel L., Gupta C. M., Eaves C. J., Eaves A. C. Cytogenetic studies of early myeloid progenitor compartments in Ph1-positive chronic myeloid leukemia. II. Long-term culture reveals the persistence of Ph1-negative progenitors in treated as well as newly diagnosed patients. Blood. 1984 May;63(5):1172–1177. [PubMed] [Google Scholar]
  10. Fauser A. A., Messner H. A. Proliferative state of human pluripotent hemopoietic progenitors (CFU-GEMM) in normal individuals and under regenerative conditions after bone marrow transplantation. Blood. 1979 Nov;54(5):1197–1200. [PubMed] [Google Scholar]
  11. Fialkow P. J. Cell lineages in hematopoietic neoplasia studied with glucose-6-phosphate dehydrogenase cell markers. J Cell Physiol Suppl. 1982;1:37–43. doi: 10.1002/jcp.1041130409. [DOI] [PubMed] [Google Scholar]
  12. Gidali J., Lajtha L. G. Regulation of haemopoietic stem cell turnover in partially irradiated mice. Cell Tissue Kinet. 1972 Mar;5(2):147–157. doi: 10.1111/j.1365-2184.1972.tb01011.x. [DOI] [PubMed] [Google Scholar]
  13. Hara H., Kai S., Fushimi M., Taniwaki S., Ifuku H., Okamoto T., Ohe Y., Fujita S., Noguchi K., Kanamaru A. Pluripotent, erythrocytic and granulocytic hemopoietic precursors in chronic granulocytic leukemia. Exp Hematol. 1981 Sep;9(8):871–877. [PubMed] [Google Scholar]
  14. Johnson G. R., Metcalf D. Pure and mixed erythroid colony formation in vitro stimulated by spleen conditioned medium with no detectable erythropoietin. Proc Natl Acad Sci U S A. 1977 Sep;74(9):3879–3882. doi: 10.1073/pnas.74.9.3879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Konopka J. B., Watanabe S. M., Singer J. W., Collins S. J., Witte O. N. Cell lines and clinical isolates derived from Ph1-positive chronic myelogenous leukemia patients express c-abl proteins with a common structural alteration. Proc Natl Acad Sci U S A. 1985 Mar;82(6):1810–1814. doi: 10.1073/pnas.82.6.1810. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lepine J., Messner H. A. Pluripotent hemopoietic progenitors (CFU-GEMM) in chronic myelogenous leukemia. Int J Cell Cloning. 1983 Sep;1(4):230–239. doi: 10.1002/stem.5530010404. [DOI] [PubMed] [Google Scholar]
  17. Madsen M., Johnsen H. E., Hansen P. W., Christiansen S. E. Isolation of human T and B lymphocytes by E-rosette gradient centrifugation. Characterization of the isolated subpopulations. J Immunol Methods. 1980;33(4):323–336. doi: 10.1016/0022-1759(80)90003-4. [DOI] [PubMed] [Google Scholar]
  18. McCulloch E. A., Siminovitch L., Till J. E., Russell E. S., Bernstein S. E. The cellular basis of the genetically determined hemopoietic defect in anemic mice of genotype Sl-Sld. Blood. 1965 Oct;26(4):399–410. [PubMed] [Google Scholar]
  19. Metcalf D., Johnson G. R., Burgess A. W. Direct stimulation by purified GM-CSF of the proliferation of multipotential and erythroid precursor cells. Blood. 1980 Jan;55(1):138–147. [PubMed] [Google Scholar]
  20. Metcalf D., Moore M. A., Sheridan J. W., Spitzer G. Responsiveness of human granulocytic leukemic cells to colony-stimulating factor. Blood. 1974 Jun;43(6):847–859. [PubMed] [Google Scholar]
  21. Metcalf D., Nicola N. A. Proliferative effects of purified granulocyte colony-stimulating factor (G-CSF) on normal mouse hemopoietic cells. J Cell Physiol. 1983 Aug;116(2):198–206. doi: 10.1002/jcp.1041160211. [DOI] [PubMed] [Google Scholar]
  22. Metcalf D. The granulocyte-macrophage colony stimulating factors. Cell. 1985 Nov;43(1):5–6. doi: 10.1016/0092-8674(85)90004-2. [DOI] [PubMed] [Google Scholar]
  23. Moore M. A., Metcalf D. Cytogenetic analysis of human acute and chronic myeloid leukemic cells cloned in agar culture. Int J Cancer. 1973 Jan 15;11(1):143–152. doi: 10.1002/ijc.2910110117. [DOI] [PubMed] [Google Scholar]
  24. Powell J. S., Fialkow P. J., Adamson J. W. Polycythemia vera: studies of hemopoiesis in continuous long-term culture of human marrow. J Cell Physiol Suppl. 1982;1:79–85. doi: 10.1002/jcp.1041130413. [DOI] [PubMed] [Google Scholar]
  25. Shtivelman E., Lifshitz B., Gale R. P., Canaani E. Fused transcript of abl and bcr genes in chronic myelogenous leukaemia. Nature. 1985 Jun 13;315(6020):550–554. doi: 10.1038/315550a0. [DOI] [PubMed] [Google Scholar]
  26. Toksöz D., Dexter T. M., Lord B. I., Wright E. G., Lajtha L. G. The regulation of hemopoiesis in long-term bone marrow cultures. II. Stimulation and inhibition of stem cell proliferation. Blood. 1980 Jun;55(6):931–936. [PubMed] [Google Scholar]
  27. Vainchenker W., Guichard J., Deschamps J. F., Bouguet J., Titeux M., Chapman J., McMichael A. J., Breton-Gorius J. Megakaryocyte cultures in the chronic phase and in the blast crisis of chronic myeloid leukaemia: studies on the differentiation of the megakaryocyte progenitors and on the maturation of megakaryocytes in vitro. Br J Haematol. 1982 May;51(1):131–146. doi: 10.1111/j.1365-2141.1982.tb07298.x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES