Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1986 Jul;83(14):5335–5339. doi: 10.1073/pnas.83.14.5335

Biochemical and electrophysiological evidence of functional vasopressin receptors in the rat superior cervical ganglion.

M Kiraly, S Audigier, E Tribollet, C Barberis, M Dolivo, J J Dreifuss
PMCID: PMC323946  PMID: 3014544

Abstract

Binding of radioactive vasopressin--but not of oxytocin--was detected by autoradiography and by labeling of membranes obtained from the rat superior cervical ganglion. In both instances binding could be displaced by V1 (smooth muscle-type) but not by V2 (kidney-type) agonists, indicating that the ganglionic vasopressin receptors are similar to those present on hepatocytes and vascular smooth muscle. In accordance with the V1 character of the receptors, vasopressin activated the turnover of membrane inositol lipids, and this effect was abolished by a structural analogue known to act as a vasopressor antagonist. A possible physiological role of vasopressin was suggested by intracellular recordings obtained from ganglion cells in vitro. Vasopressin induced a reduction in the amplitude of the fast excitatory postsynaptic potential evoked by electrical stimulation of the preganglionic nerve. This reduction in ganglionic transmission was antagonized by the same synthetic structural analogue that blocked the effect of vasopressin on inositol lipids. This study provides evidence for the presence of functional vasopressin receptors in a rat sympathetic ganglion and thus suggests that vasopressin may play a role in peripheral autonomic function.

Full text

PDF
5335

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Audigier S., Barberis C. Pharmacological characterization of two specific binding sites for neurohypophyseal hormones in hippocampal synaptic plasma membranes of the rat. EMBO J. 1985 Jun;4(6):1407–1412. doi: 10.1002/j.1460-2075.1985.tb03794.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barberis C. [3H]vasopressin binding to rat hippocampal synaptic plasma membrane. Kinetic and pharmacological characterization. FEBS Lett. 1983 Oct 17;162(2):400–405. doi: 10.1016/0014-5793(83)80795-9. [DOI] [PubMed] [Google Scholar]
  3. Berridge M. J., Downes C. P., Hanley M. R. Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands. Biochem J. 1982 Sep 15;206(3):587–595. doi: 10.1042/bj2060587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bone E. A., Fretten P., Palmer S., Kirk C. J., Michell R. H. Rapid accumulation of inositol phosphates in isolated rat superior cervical sympathetic ganglia exposed to V1-vasopressin and muscarinic cholinergic stimuli. Biochem J. 1984 Aug 1;221(3):803–811. doi: 10.1042/bj2210803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Buijs R. M., Van Heerikhuize J. J. Vasopressin and oxytocin release in the brain--a synaptic event. Brain Res. 1982 Dec 2;252(1):71–76. doi: 10.1016/0006-8993(82)90979-9. [DOI] [PubMed] [Google Scholar]
  6. Buijs R. M. Vasopressin and oxytocin--their role in neurotransmission. Pharmacol Ther. 1983;22(1):127–141. doi: 10.1016/0163-7258(83)90056-6. [DOI] [PubMed] [Google Scholar]
  7. Charpak S., Armstrong W. E., Mühlethaler M., Dreifuss J. J. Stimulatory action of oxytocin on neurones of the dorsal motor nucleus of the vagus nerve. Brain Res. 1984 May 21;300(1):83–89. doi: 10.1016/0006-8993(84)91342-8. [DOI] [PubMed] [Google Scholar]
  8. DeVries G. J., Buijs R. M., Van Leeuwen F. W., Caffé A. R., Swaab D. F. The vasopressinergic innervation of the brain in normal and castrated rats. J Comp Neurol. 1985 Mar 8;233(2):236–254. doi: 10.1002/cne.902330206. [DOI] [PubMed] [Google Scholar]
  9. Depace D. M. Evidence for a blood-ganglion barrier in the superior cervical ganglion of the rat. Anat Rec. 1982 Dec;204(4):357–363. doi: 10.1002/ar.1092040409. [DOI] [PubMed] [Google Scholar]
  10. Dun N. J., Kiraly M. Capsaicin causes release of a substance P-like peptide in guinea-pig inferior mesenteric ganglia. J Physiol. 1983 Jul;340:107–120. doi: 10.1113/jphysiol.1983.sp014752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gilbey M. P., Coote J. H., Fleetwood-Walker S., Peterson D. F. The influence of the paraventriculo-spinal pathway, and oxytocin and vasopressin on sympathetic preganglionic neurones. Brain Res. 1982 Nov 18;251(2):283–290. doi: 10.1016/0006-8993(82)90745-4. [DOI] [PubMed] [Google Scholar]
  12. Hanley M. R., Benton H. P., Lightman S. L., Todd K., Bone E. A., Fretten P., Palmer S., Kirk C. J., Michell R. H. A vasopressin-like peptide in the mammalian sympathetic nervous system. Nature. 1984 May 17;309(5965):258–261. doi: 10.1038/309258a0. [DOI] [PubMed] [Google Scholar]
  13. Jiang Z., Dun N. J., Karczmar A. G. Substance P: a putative sensory transmitter in mammalian autonomic ganglia. Science. 1982 Aug 20;217(4561):739–741. doi: 10.1126/science.6179162. [DOI] [PubMed] [Google Scholar]
  14. Kai-Kai M. A., Swann R. W., Keen P. Localization of chromatographically characterized oxytocin and arginine-vasopressin to sensory neurones in the rat. Neurosci Lett. 1985 Mar 22;55(1):83–88. doi: 10.1016/0304-3940(85)90316-7. [DOI] [PubMed] [Google Scholar]
  15. Kiraly M., Maillard M., Dreifuss J. J., Dolivo M. Neurohypophysial peptides depress cholinergic transmission in a mammalian sympathetic ganglion. Neurosci Lett. 1985 Nov 20;62(1):89–95. doi: 10.1016/0304-3940(85)90289-7. [DOI] [PubMed] [Google Scholar]
  16. Konishi S., Tsunoo A., Otsuka M. Enkephalins presynaptically inhibit cholinergic transmission in sympathetic ganglia. Nature. 1979 Nov 29;282(5738):515–516. doi: 10.1038/282515a0. [DOI] [PubMed] [Google Scholar]
  17. Manning M., Lammek B., Kolodziejczyk A. M., Seto J., Sawyer W. H. Synthetic antagonists of in vivo antidiuretic and vasopressor responses to arginine-vasopressin. J Med Chem. 1981 Jun;24(6):701–706. doi: 10.1021/jm00138a012. [DOI] [PubMed] [Google Scholar]
  18. Peters S., Kreulen D. L. Vasopressin-mediated slow EPSPs in a mammalian sympathetic ganglion. Brain Res. 1985 Jul 22;339(1):126–129. doi: 10.1016/0006-8993(85)90630-4. [DOI] [PubMed] [Google Scholar]
  19. Rostene W. H., Fischette C. T., Rainbow T. C., McEwen B. S. Modulation by vasoactive intestinal peptide of serotonin receptors in the dorsal hippocampus of the rat brain: an autoradiographic study. Neurosci Lett. 1983 Jun 16;37(2):143–148. doi: 10.1016/0304-3940(83)90144-1. [DOI] [PubMed] [Google Scholar]
  20. Sawchenko P. E., Swanson L. W. Immunohistochemical identification of neurons in the paraventricular nucleus of the hypothalamus that project to the medulla or to the spinal cord in the rat. J Comp Neurol. 1982 Mar 1;205(3):260–272. doi: 10.1002/cne.902050306. [DOI] [PubMed] [Google Scholar]
  21. Sawyer W. H., Grzonka Z., Manning M. Neurohypophysial peptides. Design of tissue-specific agonists and antagonists. Mol Cell Endocrinol. 1981 May;22(2):117–134. doi: 10.1016/0303-7207(81)90086-1. [DOI] [PubMed] [Google Scholar]
  22. Swanson L. W., McKellar S. The distribution of oxytocin- and neurophysin-stained fibers in the spinal cord of the rat and monkey. J Comp Neurol. 1979 Nov 1;188(1):87–106. doi: 10.1002/cne.901880108. [DOI] [PubMed] [Google Scholar]
  23. Tsunoo A., Konishi S., Otsuka M. Substance P as an excitatory transmitter of primary afferent neurons in guinea-pig sympathetic ganglia. Neuroscience. 1982;7(9):2025–2037. doi: 10.1016/0306-4522(82)90117-8. [DOI] [PubMed] [Google Scholar]
  24. Van Leeuwen F. W., Wolters P. Light microscopic autoradiographic localization of [3H]arginine-vasopressin binding sites in the rat brain and kidney. Neurosci Lett. 1983 Oct 31;41(1-2):61–66. doi: 10.1016/0304-3940(83)90223-9. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES