Abstract
The nucleotide sequence of Lactobacillus viridescens ATCC 12706 5S RNA was determined to be pU-G-U-U-G-U-G-A-U-G-A-U-G-G-C-A-U-U-G-A-G-G-U-C-A-C-A-C C-U-G-U-U-C-C-C-A-U-A-C-C-G-A-A-C-A-C-A-G-A-A-G-U-U-A-A-G-C-U-C-A-A-U-A-G-C-G C-C-G-A-A-A-G-U-A-G-U-U-G-G-A-G-G-A-U-C-U-C-U-U-C-C-U-G-C-G-A-G-G-A-U-A-G-G-A C-G-U-C-G-C-A-A-U-G-COH. When compared with other published sequences of prokaryotic 5S RNA species, this sequence shows as much homology with that from B. substilis (80% homology when all variations included) and B. megaterium (77% homology) as with the 5S RNA from another member of Lactobacillaceae family (L. brevis, 79% homology). The sequence contains the proposed tRNA binding site (CGAAC, positions 41-45) and can accomodate most, but not all, of the more recently proposed helical regions of secondary structure.
Full text
PDF








Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Donis-Keller H., Maxam A. M., Gilbert W. Mapping adenines, guanines, and pyrimidines in RNA. Nucleic Acids Res. 1977 Aug;4(8):2527–2538. doi: 10.1093/nar/4.8.2527. [DOI] [PMC free article] [PubMed] [Google Scholar]
- England T. E., Uhlenbeck O. C. Enzymatic oligoribonucleotide synthesis with T4 RNA ligase. Biochemistry. 1978 May 30;17(11):2069–2076. doi: 10.1021/bi00604a008. [DOI] [PubMed] [Google Scholar]
- Erdmann V. A. Structure and function of 5S and 5.8 S RNA. Prog Nucleic Acid Res Mol Biol. 1976;18:45–90. [PubMed] [Google Scholar]
- Fox G. E., Woese C. R. 5S RNA secondary structure. Nature. 1975 Aug 7;256(5517):505–507. doi: 10.1038/256505a0. [DOI] [PubMed] [Google Scholar]
- Hori H., Osawa S. Evolutionary change in 5S RNA secondary structure and a phylogenic tree of 54 5S RNA species. Proc Natl Acad Sci U S A. 1979 Jan;76(1):381–385. doi: 10.1073/pnas.76.1.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ikemura T., Dahlberg J. E. Small ribonucleic acids of Escherichia coli. I. Characterization by polyacrylamide gel electrophoresis and fingerprint analysis. J Biol Chem. 1973 Jul 25;248(14):5024–5032. [PubMed] [Google Scholar]
- Marotta C. A., Varricchio F., Smith I., Weissman S. M. The primary structure of Bacillus subtilis and Bacillus stearothermophilus 5 S ribonucleic acids. J Biol Chem. 1976 May 25;251(10):3122–3127. [PubMed] [Google Scholar]
- Peattie D. A. Direct chemical method for sequencing RNA. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1760–1764. doi: 10.1073/pnas.76.4.1760. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pribula C. D., Fox G. E., Woese C. R. Nucleotide sequence of Bacillus megaterium 5 S RNA. FEBS Lett. 1974 Aug 30;44(3):322–323. doi: 10.1016/0014-5793(74)81168-3. [DOI] [PubMed] [Google Scholar]
- Raué H. A., Rosner A., Planta R. J. Heterogeneity of the genes coding for 5 S RNA in three related strains of the genus Bacillus. Mol Gen Genet. 1977 Nov 14;156(2):185–193. doi: 10.1007/BF00283491. [DOI] [PubMed] [Google Scholar]
- Schendel P. F., Wells R. D. The synthesis and purification of (gamma-32P)-adenosine triphosphate with high specific activity. J Biol Chem. 1973 Dec 10;248(23):8319–8321. [PubMed] [Google Scholar]
- Silberklang M., Prochiantz A., Haenni A. L., Rajbhandary U. L. Studies on the sequence of the 3'-terminal region of turnip-yellow-mosaic-virus RNA. Eur J Biochem. 1977 Feb;72(3):465–478. doi: 10.1111/j.1432-1033.1977.tb11270.x. [DOI] [PubMed] [Google Scholar]
- Simoncsits A., Brownlee G. G., Brown R. S., Rubin J. R., Guilley H. New rapid gel sequencing method for RNA. Nature. 1977 Oct 27;269(5631):833–836. doi: 10.1038/269833a0. [DOI] [PubMed] [Google Scholar]
- Weidner H., Yuan R., Crothers D. M. Does 5S RNA function by a switch between two secondary structures? Nature. 1977 Mar 10;266(5598):193–194. doi: 10.1038/266193a0. [DOI] [PubMed] [Google Scholar]
- Woese C. R., Luehrsen K. R., Pribula C. D., Fox G. E. Sequence characterization of 5S ribosomal RNA from eight gram positive procaryotes. J Mol Evol. 1976 Aug 3;8(2):143–153. doi: 10.1007/BF01739100. [DOI] [PubMed] [Google Scholar]