Abstract
5' tritylated oligonucleotides binding hydrophobically to low trityl cellulose/sepharose (< 15 microMTr/ml) retain their hydrogen-bonding specificities for complementary sequences. This, constitutes a novel mode of attaching affinity ligands to solid supports, is more convenient than existing methods, and proceeds with 100% yield. The salt, dielectric constant and temperature dependence of these non-covalently anchored ligands permits the isolation of a variety of RNAs including fibroin mRNA. Medium trityl sepharose (15-40 microM Tr/ml) has a high binding specificity for poly A and poly A containing mRNA, equivalent to dT cellulose. Most proteins, including nucleic acid enzymes, bind to these columns and retain enzymatic activity, thus mimicking enzymes attached covalently to solid phases. A number of in vivo counterparts to this hydrophobically determined specificity are noted, as are homologies to nitro-cellulose filters.
Full text
PDF


















Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agarwal K. L., Yamazaki A., Cashion P. J., Khorana H. G. Chemical synthesis of polynucleotides. Angew Chem Int Ed Engl. 1972 Jun;11(6):451–459. doi: 10.1002/anie.197204511. [DOI] [PubMed] [Google Scholar]
- Anderson D. G., Hammes G. G., Walz F. G., Jr Binding of phosphate ligands to ribonuclease A. Biochemistry. 1968 May;7(5):1637–1645. doi: 10.1021/bi00845a004. [DOI] [PubMed] [Google Scholar]
- Bergmann I. E., Brawerman G. Control of breakdown of the polyadenylate sequence in mammalian polyribosomes: role of poly(adenylic acid)-protein interactions. Biochemistry. 1977 Jan 25;16(2):259–264. doi: 10.1021/bi00621a016. [DOI] [PubMed] [Google Scholar]
- Cashion P. J., Fridkin M., Agarwal K. L., Jay E., Khorana H. G. Use of trityl- and -naphthylcarbamoylcellulose derivatives in oligonucleotide synthesis. Biochemistry. 1973 May 8;12(10):1985–1990. doi: 10.1021/bi00734a023. [DOI] [PubMed] [Google Scholar]
- Cashion P., Notman H., Sathe G., Cadger T., Porter K., Jay E. Chemical synthesis of the hexanucleotide d(A-C-C-A-G-C) required to isolate fibroin mRNA on an affinity column. Nucleic Acids Res. 1977 Aug;4(8):2593–2608. doi: 10.1093/nar/4.8.2593. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coombs D. H., Pearson G. D. Filter-binding assay for covalent DNA-protein complexes: adenovirus DNA-terminal protein complex. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5291–5295. doi: 10.1073/pnas.75.11.5291. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Maeyer-Guignard J., Thang M. N., De Maeyer E. Binding of mouse interferon to polynucleotides. Proc Natl Acad Sci U S A. 1977 Sep;74(9):3787–3790. doi: 10.1073/pnas.74.9.3787. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Demushkin V. P., Plyashkevich Y. G. Analysis of nucleic acid bases by high-performance liquid ion chromatography. Anal Biochem. 1978 Jan;84(1):12–18. doi: 10.1016/0003-2697(78)90479-7. [DOI] [PubMed] [Google Scholar]
- Eckstein H., Schott H. Conformation affinity of cross-linked polyacrylic gels towards nucleobases, nucleosides and nucleotides. Biochim Biophys Acta. 1977 Jun 3;476(3):181–189. doi: 10.1016/0005-2787(77)90001-6. [DOI] [PubMed] [Google Scholar]
- Eisenberg H., Felsenfeld G. Studies of the temperature-dependent conformation and phase separation of polyriboadenylic acid solutions at neutral pH. J Mol Biol. 1967 Nov 28;30(1):17–37. doi: 10.1016/0022-2836(67)90240-9. [DOI] [PubMed] [Google Scholar]
- Engel J. D., Davidson N. Addition of poly(adenylic acid) to RNA using polynucleotide phosphorylase: an improved method for electron microscopic visualization of RNA-DNA hybrids. Biochemistry. 1978 Sep 5;17(18):3883–3888. doi: 10.1021/bi00611a032. [DOI] [PubMed] [Google Scholar]
- Franklin R. M. Purification and properties of the replicative intermediate of the RNA bacteriophage R17. Proc Natl Acad Sci U S A. 1966 Jun;55(6):1504–1511. doi: 10.1073/pnas.55.6.1504. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Junowicz E., Spencer J. H. Rapid separation of nucleosides and nucleotides by cation-exchange column chromatography. J Chromatogr. 1969 Oct 28;44(2):342–348. doi: 10.1016/s0021-9673(01)92545-2. [DOI] [PubMed] [Google Scholar]
- Krause M. O., Ringuette M. Low molecular weight nuclear RNA from SV40-transformed WI38 cells; effect on transcription of WI38 chromatin in vitro. Biochem Biophys Res Commun. 1977 Jun 6;76(3):796–803. doi: 10.1016/0006-291x(77)91571-6. [DOI] [PubMed] [Google Scholar]
- MALAMY M. H., HORECKER B. L. RELEASE OF ALKALINE PHOSPHATASE FROM CELLS OF ESCHERICHIA COLI UPON LYSOZYME SPHEROPLAST FORMATION. Biochemistry. 1964 Dec;3:1889–1893. doi: 10.1021/bi00900a017. [DOI] [PubMed] [Google Scholar]
- Maurizot J. C., Boubault G., Hélène C. Interaction of aromatic residues of proteins with nucleic acids. Binding of oligopeptides to copolynucleotides of adenine and cytosine. Biochemistry. 1978 May 30;17(11):2096–2101. doi: 10.1021/bi00604a012. [DOI] [PubMed] [Google Scholar]
- Maxam A. M., Gilbert W. A new method for sequencing DNA. Proc Natl Acad Sci U S A. 1977 Feb;74(2):560–564. doi: 10.1073/pnas.74.2.560. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mercer J. F., Naora H. A comparison of the chromatographic properties of various polyadenylate binding materials. J Chromatogr. 1975 Nov 12;114(1):115–128. doi: 10.1016/s0021-9673(00)85248-6. [DOI] [PubMed] [Google Scholar]
- Michelson A. M., Monny C. Polynucleotide analogues. IX. Polyxanthylic acid. Biochim Biophys Acta. 1966 Dec 21;129(3):460–474. [PubMed] [Google Scholar]
- Milcarek C., Penman S. Membrane-bound polyribosomes in HeLa cells: association of polyadenylic acid with membranes. J Mol Biol. 1974 Oct 25;89(2):327–338. doi: 10.1016/0022-2836(74)90522-1. [DOI] [PubMed] [Google Scholar]
- RAJBHANDARY U. L., YOUNG R. J., KHORANA H. G. STUDIES ON POLYNUCLEOTIDES. XXXII. THE LABELING OF END GROUPS IN POLYNUCLEOTIDE CHAINS: THE SELECTIVE PHOSPHORYLATION OF PHOSPHOMONOESTER GROUPS IN AMINO ACID ACCEPTOR RIBONUCLEIC ACIDS. J Biol Chem. 1964 Nov;239:3875–3884. [PubMed] [Google Scholar]
- Roberts W. K. Use of benzoylated cellulose columns for the isolation of poly(adenylic acid) containing RNA and other polynucleotides with little secondary structure. Biochemistry. 1974 Aug 27;13(18):3677–3682. doi: 10.1021/bi00715a009. [DOI] [PubMed] [Google Scholar]
- Robinson D. R., Grant M. E. The effects of aqueous salt solutions on the activity coefficients of purine and pyrimidine bases and their relation to the denaturation of deoxyribonucleic acid by salts. J Biol Chem. 1966 Sep 10;241(17):4030–4042. [PubMed] [Google Scholar]
- Rose K. M., Jacob S. T., Kumar A. Poly(A) polymerase and poly(A)-specific mRNA binding protein are antigenically related. Nature. 1979 May 17;279(5710):260–262. doi: 10.1038/279260a0. [DOI] [PubMed] [Google Scholar]
- Russell R. G., Monod A., Bonjour J. P., Fleisch H. Relation between alkaline phosphatase and Ca 2+ -ATPase in calcium transport. Nat New Biol. 1972 Nov 22;240(99):126–127. doi: 10.1038/newbio240126a0. [DOI] [PubMed] [Google Scholar]
- Singhal R. P. Ion-exlusion chromatography: analysis and isolation of nucleic acid components, and influence of separation parameters. Arch Biochem Biophys. 1972 Oct;152(2):800–810. doi: 10.1016/0003-9861(72)90276-7. [DOI] [PubMed] [Google Scholar]
- Stannard B. S., Felsenfeld G. The conformation of polyriboadenylic acid at low temperature and neutral pH. A single-stranded rodlike structure. Biopolymers. 1975 Feb;14(2):299–307. doi: 10.1002/bip.1975.360140205. [DOI] [PubMed] [Google Scholar]
- Suzuki Y., Brown D. D. Isolation and identification of the messenger RNA for silk fibroin from Bombyx mori. J Mol Biol. 1972 Feb 14;63(3):409–429. doi: 10.1016/0022-2836(72)90437-8. [DOI] [PubMed] [Google Scholar]
- Svensson B. Use of isoelectric focusing to characterize the bonds established during coupling of CNBr-activated amylodextrin to subtilisin type novo. FEBS Lett. 1973 Jan 15;29(2):167–169. doi: 10.1016/0014-5793(73)80552-6. [DOI] [PubMed] [Google Scholar]
- Thrierr J. C., Dourlent M., Leng M. A study of polyuridylic acid. J Mol Biol. 1971 Jun 28;58(3):815–830. doi: 10.1016/0022-2836(71)90042-8. [DOI] [PubMed] [Google Scholar]
- Thrierr J. C., Leng M. Conformation of polyribouridylic acid. Biochim Biophys Acta. 1969 Jun 17;182(2):575–577. doi: 10.1016/0005-2787(69)90213-5. [DOI] [PubMed] [Google Scholar]
- Torrence P. F., De Clercq E., Witkop B. The interaction of polyxanthylic acid with polyadenylic acid. Biochim Biophys Acta. 1977 Mar 2;475(1):1–6. doi: 10.1016/0005-2787(77)90332-x. [DOI] [PubMed] [Google Scholar]
- Wagner A. F., Bugianesi R. L., Shen T. Y. Preparation of sepharose-bound poly (rI:rC). Biochem Biophys Res Commun. 1971 Oct 1;45(1):184–189. doi: 10.1016/0006-291x(71)90067-2. [DOI] [PubMed] [Google Scholar]
- Warner J. R., Soeiro R., Birnboim H. C., Girard M., Darnell J. E. Rapidly labeled HeLa cell nuclear RNA. I. Identification by zone sedimentation of a heterogeneous fraction separate from ribosomal precursor RNA. J Mol Biol. 1966 Aug;19(2):349–361. doi: 10.1016/s0022-2836(66)80009-8. [DOI] [PubMed] [Google Scholar]
- Wilchek M., Gorecki M. Affinity chromatography of bovine pancreatic ribonuclease A. Eur J Biochem. 1969 Dec;11(3):491–494. doi: 10.1111/j.1432-1033.1969.tb00799.x. [DOI] [PubMed] [Google Scholar]
- Wolska K. I., Kunicki-Goldfinger W. J. Comparison of two DNA-RNA hybridization methods: on membrane filters and in solution. Acta Microbiol Pol. 1977;26(4):447–449. [PubMed] [Google Scholar]
- Zimmerman S. B., Cohen G. H., Davies D. R. X-ray fiber diffraction and model-building study of polyguanylic acid and polyinosinic acid. J Mol Biol. 1975 Feb 25;92(2):181–192. doi: 10.1016/0022-2836(75)90222-3. [DOI] [PubMed] [Google Scholar]
- Zimmerman S. B., Davies D. R., Navia M. A. An ordered single-stranded structure for polyadenylic acid in denaturing solvents. An X-ray fiber diffraction and model building study. J Mol Biol. 1977 Oct 25;116(2):317–330. doi: 10.1016/0022-2836(77)90219-4. [DOI] [PubMed] [Google Scholar]
