Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1980 Apr 11;8(7):1675–1691. doi: 10.1093/nar/8.7.1675

Azidopolynucleotides as photoaffinity reagents.

I L Cartwright, D W Hutchinson
PMCID: PMC324024  PMID: 7001370

Abstract

Polynucleotides containing adenosine and 8-azidoadenosine or inosine and 8-azidoinosine residues have been prepared from mixtures of nucleoside diphosphates using polynucleotide phosphorylase from Escherichia coli. These copolymers can form complexes with polyuridylic or polycytidylic acids respectively. Single stranded poly(adenylic, 8-azidoadenylic acid) [poly(A,z8A)] has been used as a photoaffinity reagent to explore the subunit topography of RNA polymerase from E. coli.

Full text

PDF
1675

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adman R., Grossman L. Template properties of polyribonucleotides containing uracil or modified uracil in the RNA polymerase reaction. J Mol Biol. 1967 Feb 14;23(3):417–439. doi: 10.1016/s0022-2836(67)80116-5. [DOI] [PubMed] [Google Scholar]
  2. Bayley H., Knowles J. R. Photoaffinity labeling. Methods Enzymol. 1977;46:69–114. doi: 10.1016/s0076-6879(77)46012-9. [DOI] [PubMed] [Google Scholar]
  3. Blake R. D., Massoulié J., Fresco J. R. Polynucleotides. 8. A spectral approach to the equilibria between polyriboadenylate and polyribouridylate and their complexes. J Mol Biol. 1967 Dec 14;30(2):291–308. [PubMed] [Google Scholar]
  4. Bon S., Godefroy T., Grunberg-Manago M. Cinétique des réactions catalysées par la polynucléotide phosphorylase de Escherichia coli. Le 2-désoxy-ADP comme substrat et inhibiteur. Eur J Biochem. 1970 Oct;16(2):363–372. doi: 10.1111/j.1432-1033.1970.tb01090.x. [DOI] [PubMed] [Google Scholar]
  5. Burgess R. R. A new method for the large scale purification of Escherichia coli deoxyribonucleic acid-dependent ribonucleic acid polymerase. J Biol Chem. 1969 Nov 25;244(22):6160–6167. [PubMed] [Google Scholar]
  6. Cartwright I. L., Hutchinson D. W. A simple, rapid preparation of alpha[32P]-labelled adenosine diphosphate. Nucleic Acids Res. 1977 Jul;4(7):2507–2510. doi: 10.1093/nar/4.7.2507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cartwright I. L., Hutchinson D. W., Armstrong V. W. The reaction between thiols and 8-azidoadenosine derivatives. Nucleic Acids Res. 1976 Sep;3(9):2331–2339. doi: 10.1093/nar/3.9.2331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Coggins J. R., Lumsden J., Malcolm A. D. A study of the quaternary structure of Escherichia coli RNA polymerase using bis(imido esters). Biochemistry. 1977 Mar 22;16(6):1111–1116. doi: 10.1021/bi00625a013. [DOI] [PubMed] [Google Scholar]
  9. Cory S., Genin C., Adams J. M. Modified nucleosides and 5'-end groups in purified mouse immunoglobulin light chain mRNA and rabbit globin mRNA detected by borohydride labelling. Biochim Biophys Acta. 1976 Dec 1;454(2):248–262. doi: 10.1016/0005-2787(76)90228-8. [DOI] [PubMed] [Google Scholar]
  10. Dreyfuss G., Schwartz K., Blout E. R., Barrio J. R., Liu F. T., Leonard N. J. Fluorescent photoaffinity labeling: adenosine 3',5'-cyclic monophosphate receptor sites. Proc Natl Acad Sci U S A. 1978 Mar;75(3):1199–1203. doi: 10.1073/pnas.75.3.1199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. FELSENFELD G., RICH A. Studies on the formation of two- and three-stranded polyribonucleotides. Biochim Biophys Acta. 1957 Dec;26(3):457–468. doi: 10.1016/0006-3002(57)90091-4. [DOI] [PubMed] [Google Scholar]
  12. FOX C. F., GUMPORT R. I., WEISS S. B. THE ENZYMATIC SYNTHESIS OF RIBONUCLEIC ACID. V. THE INTERACTION OF RIBONUCLEIC ACID POLYMERASE WITH NUCLEIC ACIDS. J Biol Chem. 1965 May;240:2101–2109. [PubMed] [Google Scholar]
  13. FOX C. F., ROBINSON W. S., HASELKORN R., WEISS S. B. ENZYMATIC SYNTHESIS OF RIBONUCLEIC ACID. III. THE RIBONUCLEIC ACID-PRIMED SYNTHESIS OF RIBONUCLEIC ACID WITH MICROCOCCUS LYSODEIKTICUS RIBONUCLEIC ACID POLYMERASE. J Biol Chem. 1964 Jan;239:186–195. [PubMed] [Google Scholar]
  14. Frischauf A. M., Scheit K. H. Affinity labeling of E. coli RNA polymerase with substrate and template analogues. Biochem Biophys Res Commun. 1973 Aug 21;53(4):1227–1233. doi: 10.1016/0006-291x(73)90596-2. [DOI] [PubMed] [Google Scholar]
  15. Hillel Z., Wu C. W. Photochemical cross-linking studies on the interaction of Escherichia coli RNA polymerase with T7 DNA. Biochemistry. 1978 Jul 25;17(15):2954–2961. doi: 10.1021/bi00608a003. [DOI] [PubMed] [Google Scholar]
  16. Howard F. B., Frazier J., Miles H. T. Poly(8-bromoadenylic acid): synthesis and characterization of an all-syn polynucleotide. J Biol Chem. 1975 May 25;250(10):3951–3959. [PubMed] [Google Scholar]
  17. Ikehara M., Tazawa I., Fukui T. Polynucleotides. VII. Synthesis of ribopolynucleotides containing 8-substituted purine nucleotides by polynucleotide phosphorylase. Biochemistry. 1969 Feb;8(2):736–743. doi: 10.1021/bi00830a040. [DOI] [PubMed] [Google Scholar]
  18. Jones O. W., Berg P. Studies on the binding of RNA polymerase to polynucleotides. J Mol Biol. 1966 Dec 28;22(2):199–209. doi: 10.1016/0022-2836(66)90126-4. [DOI] [PubMed] [Google Scholar]
  19. Kallenbach N. R., Litwin S. Statistical analysis of spectral mixing curve data. J Mol Biol. 1971 Dec 28;62(3):608–611. doi: 10.1016/0022-2836(71)90159-8. [DOI] [PubMed] [Google Scholar]
  20. Kapuler A. M., Monny C., Michelson A. M. The relationship of mono- and polynucleotide conformation to catalysis by polynucleotide phosphorylase. Biochim Biophys Acta. 1970 Sep 17;217(1):18–29. doi: 10.1016/0005-2787(70)90118-8. [DOI] [PubMed] [Google Scholar]
  21. Koberstein R. 8-Azidoacenine analogs of NAD+ and FAD. Synthesis and coenzyme properties with NAD+-dependent and FAD-dependent enzymes. Eur J Biochem. 1976 Aug 1;67(1):223–229. doi: 10.1111/j.1432-1033.1976.tb10653.x. [DOI] [PubMed] [Google Scholar]
  22. Koberstein R., Cobianchi L., Sund H. Interaction of the photoaffinity label 8-azido-ADP with glutamate dehydrogenase. FEBS Lett. 1976 Apr 15;64(1):176–180. doi: 10.1016/0014-5793(76)80277-3. [DOI] [PubMed] [Google Scholar]
  23. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  24. Lomant A. J., Fresco J. R. Structural and energetic consequences of noncomplementary base oppositions in nucleic acid helices. Prog Nucleic Acid Res Mol Biol. 1975;15(0):185–218. doi: 10.1016/s0079-6603(08)60120-8. [DOI] [PubMed] [Google Scholar]
  25. Maitra U., Nakata Y., Hurwitz J. The role of deoxyribonucleic acid in ribonucleic acid synthesis. XIV. A study of the initiation of ribonucleic acid synthesis. J Biol Chem. 1967 Nov 10;242(21):4908–4918. [PubMed] [Google Scholar]
  26. Miller J. P., Boswell K. H., Muneyama K., Simon L. N., Robins R. K., Shuman D. A. Synthesis and biochemical studies of various 8-substituted derivatives of guanosine 3',5'-cyclic phosphate, inosine 3',5'-cyclic phosphate, and xanthosine 3',5'-cyclic phosphate. Biochemistry. 1973 Dec 18;12(26):5310–5319. doi: 10.1021/bi00750a014. [DOI] [PubMed] [Google Scholar]
  27. Okada M., Vergne J., Brahms J. Subunit topography of RNA polymerase (E. coli) in the complex with DNA. Nucleic Acids Res. 1978 Jun;5(6):1845–1862. doi: 10.1093/nar/5.6.1845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Randerath E., Yu C. T., Randerath K. Base analysis of ribopolynucleotides by chemical tritium labeling: a methodological study with model nucleosides and purified tRNA species. Anal Biochem. 1972 Jul;48(1):172–198. doi: 10.1016/0003-2697(72)90181-9. [DOI] [PubMed] [Google Scholar]
  29. Randerath K. An evaluation of film detection methods for weak beta-emitters, particularly tritium. Anal Biochem. 1970 Mar;34:188–205. doi: 10.1016/0003-2697(70)90100-4. [DOI] [PubMed] [Google Scholar]
  30. Rosenblit P. D., Levy D. Photocatalyzed labeling of adipocyte plasma membranes with 8-azidoadenosine. Biochem Biophys Res Commun. 1977 Jul 11;77(1):95–103. doi: 10.1016/s0006-291x(77)80169-1. [DOI] [PubMed] [Google Scholar]
  31. Simpson R. B. The molecular topography of RNA polymerase-promoter interaction. Cell. 1979 Oct;18(2):277–285. doi: 10.1016/0092-8674(79)90047-3. [DOI] [PubMed] [Google Scholar]
  32. Sternbach H., Engelhardt R., Lezius A. G. Rapid isolation of highly active RNA polymerase from Escherichia coli and its subunits by matrix-bound heparin. Eur J Biochem. 1975 Dec 1;60(1):51–55. doi: 10.1111/j.1432-1033.1975.tb20974.x. [DOI] [PubMed] [Google Scholar]
  33. TISSIERES A., BOURGEOIS S., GROS F. Inhibition of RNA polymerase by RNA. J Mol Biol. 1963 Jul;7:100–103. doi: 10.1016/s0022-2836(63)80024-8. [DOI] [PubMed] [Google Scholar]
  34. WOOD W. B., BERG P. INFLUENCE OF DNA SECONDARY STRUCTURE ON DNA-DEPENDENT POLYPEPTIDE SYNTHESIS. J Mol Biol. 1964 Aug;9:452–471. doi: 10.1016/s0022-2836(64)80219-9. [DOI] [PubMed] [Google Scholar]
  35. de Clercq E., Torrence P. F., Stollar B. D., Hobbs J., Fukui T., Kakiuchi N., Ikehara M. Interferon induction by a 2'-modified double-helical RNA, poly(2'-azido-2'-deoxyinosinic acid) . polycytidylic acid. Eur J Biochem. 1978 Aug 1;88(2):341–349. doi: 10.1111/j.1432-1033.1978.tb12455.x. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES