Abstract
All of the eleven psoralen crosslinking features previously mapped by electron microscopy of the 16S rRNA can be matched by energetically stable duplex regions found by a computer search of the sequence. One additional particularly stable duplex found in the sequence has subsequently been seen in the microscope. There is no indication that a best or unique fit of the sequence to the crosslinking data has been found. However, it is encouraging that all twelve assignments involve non-overlapping regions of the sequence which allows their simultaneous construction. The resulting general pattern of secondary structure is very different from previous suggestions for rRNAs or other complex RNAs. It is an RNA chain folded in space much like a typical protein chain. Because of the interwound nature of double helices, base pairing between distant regions of the sequence might result in topologically knotted structures. However, examination of available electron microscopic data suggests that the 16S rRNA does not contain any knots.
Full text
PDF

















Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen S. H., Wong K. P. The hydrodynamic and spectroscopic properties of 16 S RNA from Escherichia coli ribosome in reconstitution buffer. J Biol Chem. 1978 Dec 25;253(24):8759–8766. [PubMed] [Google Scholar]
- Bauer W. R. Structure and reactions of closed duplex DNA. Annu Rev Biophys Bioeng. 1978;7:287–313. doi: 10.1146/annurev.bb.07.060178.001443. [DOI] [PubMed] [Google Scholar]
- Brosius J., Palmer M. L., Kennedy P. J., Noller H. F. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci U S A. 1978 Oct;75(10):4801–4805. doi: 10.1073/pnas.75.10.4801. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carbon P., Ehresmann C., Ehresmann B., Ebel J. P. The sequence of Escherichia coli ribosomal 16 S RNA determined by new rapid gel methods. FEBS Lett. 1978 Oct 1;94(1):152–156. doi: 10.1016/0014-5793(78)80926-0. [DOI] [PubMed] [Google Scholar]
- Cole M. D., Beer M., Koller T., Strycharz W. A., Nomura M. Electron microscopic determination of the binding sites of ribosomal proteins S4 and S8 on 16S RNA. Proc Natl Acad Sci U S A. 1978 Jan;75(1):270–274. doi: 10.1073/pnas.75.1.270. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ehresmann C., Stiegler P., Mackie G. A., Zimmermann R. A., Ebel J. P., Fellner P. Primary sequence of the 16S ribosomal RNA of Escherichia coli. Nucleic Acids Res. 1975 Feb;2(2):265–278. doi: 10.1093/nar/2.2.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fuller F. B. The writhing number of a space curve. Proc Natl Acad Sci U S A. 1971 Apr;68(4):815–819. doi: 10.1073/pnas.68.4.815. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garrett R. A., Ungewickell E., Newberry V., Hunter J., Wagner R. An RNA core in the 30S ribosomal subunit of Escherichia coli and its structural and functional significance. Cell Biol Int Rep. 1977 Nov;1(6):487–502. doi: 10.1016/0309-1651(77)90086-8. [DOI] [PubMed] [Google Scholar]
- Isaacs S. T., Shen C. K., Hearst J. E., Rapoport H. Synthesis and characterization of new psoralen derivatives with superior photoreactivity with DNA and RNA. Biochemistry. 1977 Mar 22;16(6):1058–1064. doi: 10.1021/bi00625a005. [DOI] [PubMed] [Google Scholar]
- Müller R., Garrett R. A., Noller H. F. The structure of the RNA binding site of ribosomal proteins S8 and S15. J Biol Chem. 1979 May 25;254(10):3873–3878. [PubMed] [Google Scholar]
- Steitz J. A., Jakes K. How ribosomes select initiator regions in mRNA: base pair formation between the 3' terminus of 16S rRNA and the mRNA during initiation of protein synthesis in Escherichia coli. Proc Natl Acad Sci U S A. 1975 Dec;72(12):4734–4738. doi: 10.1073/pnas.72.12.4734. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stettler U. H., Weber H., Koller T., Weissmann C. Preparation and characterization of form V DNA, the duplex DNA resulting from association of complementary, circular single-stranded DNA. J Mol Biol. 1979 Jun 15;131(1):21–40. doi: 10.1016/0022-2836(79)90299-7. [DOI] [PubMed] [Google Scholar]
- Studnicka G. M., Rahn G. M., Cummings I. W., Salser W. A. Computer method for predicting the secondary structure of single-stranded RNA. Nucleic Acids Res. 1978 Sep;5(9):3365–3387. doi: 10.1093/nar/5.9.3365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tinoco I., Jr, Borer P. N., Dengler B., Levin M. D., Uhlenbeck O. C., Crothers D. M., Bralla J. Improved estimation of secondary structure in ribonucleic acids. Nat New Biol. 1973 Nov 14;246(150):40–41. doi: 10.1038/newbio246040a0. [DOI] [PubMed] [Google Scholar]
- Vasiliev V. D., Koteliansky V. E., Shatsky I. N., Rezapkin G. V. Structure of the ribosomal 16 S RNA-protein S4 complex as revealed by electron microscopy. FEBS Lett. 1977 Dec 1;84(1):43–47. doi: 10.1016/0014-5793(77)81053-3. [DOI] [PubMed] [Google Scholar]
- Vasiliev V. D., Selivanova O. M., Koteliansky V. E. Specific selfpacking of the ribosomal 16 S RNA. FEBS Lett. 1978 Nov 15;95(2):273–276. doi: 10.1016/0014-5793(78)81009-6. [DOI] [PubMed] [Google Scholar]
- Vinograd J., Lebowitz J., Radloff R., Watson R., Laipis P. The twisted circular form of polyoma viral DNA. Proc Natl Acad Sci U S A. 1965 May;53(5):1104–1111. doi: 10.1073/pnas.53.5.1104. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Young R. A., Steitz J. A. Complementary sequences 1700 nucleotides apart form a ribonuclease III cleavage site in Escherichia coli ribosomal precursor RNA. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3593–3597. doi: 10.1073/pnas.75.8.3593. [DOI] [PMC free article] [PubMed] [Google Scholar]



