Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1980 May 10;8(9):2085–2091. doi: 10.1093/nar/8.9.2085

Structure of transfer RNA by carbon NMR: resolution of single carbon resonances from 13C-enriched, purified species.

P F Agris, P G Schmidt
PMCID: PMC324060  PMID: 6159600

Abstract

Methyl carbon-13 NMR spectra of purified tRNA species are presented for the first time. In addition, these spectra of tRNA species specific for phenylalanine, tyrosine, and cysteine exhibited the first resolution of single methyl carbon resonances. Carbon-13 enriched methyl groups of ribothymidine (T) and 7-methylguanosine (m7G) and the methylthio group of 2-methylthio-N6-(delta2-isopentenyl) adenosine (ms2i6A) were resolved. The T methyl signal of tRNAPhe shifted from 12.3 ppm at 45 degrees in the absence of added Mg2+ to 11.1 ppm at 30 degrees in the presence of 10mM MgCl2. The same change in conditions led to a 0.4 ppm shift of the m7G methyl signal in the opposite direction. The relative ease in obtainment of single carbon resonances of purified tRNA species, and display of the sensitivity of their chemical shifts to changes in local structure, are requisite criteria for 13C-NMR to be a useful technique in probing tRNA conformation and its changes during interaction with proteins and other nucleic acids.

Full text

PDF
2085

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agris P. F., Fujiwara F. G., Schmidt C. F., Loeppky R. N. Utilization of an Escherichia coli mutant for carbon-13 enrichment of tRNA for NMR studies. Nucleic Acids Res. 1975 Sep;2(9):1503–1512. doi: 10.1093/nar/2.9.1503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Agris P. F., Söll D., Seno T. Biological function of 2-thiouridine in Escherichia coli glutamic acid transfer ribonucleic acid. Biochemistry. 1973 Oct 23;12(22):4331–4337. doi: 10.1021/bi00746a005. [DOI] [PubMed] [Google Scholar]
  3. Blakley R. L., Cocco L., London R. E., Walker T. E., Matwiyoff N. A. Nuclear magnetic resonance studies on bacterial dihydrofolate reductase containing [methyl-13C]methionine. Biochemistry. 1978 Jun 13;17(12):2284–2293. doi: 10.1021/bi00605a005. [DOI] [PubMed] [Google Scholar]
  4. Chang C., Lee C. G. Nucleic acids and alkylating agents: carbon-13 magnetic resonance studies of the methylation of ribonucleic acid with methyl methanesulfonate. Arch Biochem Biophys. 1976 Oct;176(2):801–805. doi: 10.1016/0003-9861(76)90225-3. [DOI] [PubMed] [Google Scholar]
  5. Eakin R. T., Morgan L. O., Gregg C. T., Matwiyoff N. A. Carbon-13 nuclear magnetic resonance spectroscopy of living cells and their metabolism of a specifically labeled 13C substrate. FEBS Lett. 1972 Dec 15;28(3):259–264. doi: 10.1016/0014-5793(72)80726-9. [DOI] [PubMed] [Google Scholar]
  6. Gauss D. H., Grüter F., Sprinzl M. Compilation of tRNA sequences. Nucleic Acids Res. 1979 Jan;6(1):r1–r19. [PMC free article] [PubMed] [Google Scholar]
  7. Hamill W. D., Jr, Grant D. M., Horton W. J., Lundquist R., Dickman S. Letter: Magnetic resonance spectroscopy on carbon-13 labeled uracil in transfer ribonucleic acid. J Am Chem Soc. 1976 Mar 3;98(5):1276–1273. doi: 10.1021/ja00421a047. [DOI] [PubMed] [Google Scholar]
  8. Komoroski R. A., Allerhand A. Natural-abundance carbon-13 Fourier-transform nuclear magnetic resonance spectra and spin lattice relaxation times of unfractionated yeast transfer-FNA. Proc Natl Acad Sci U S A. 1972 Jul;69(7):1804–1808. doi: 10.1073/pnas.69.7.1804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Komoroski R. A., Allerhand A. Observation of resonances from some minor bases in the natural-abundance carbon-13 nuclear magnetic resonance spectrum of unfractionated yeast transfer ribonucleic acid. Evidence for fast internal motion of the dihydrouracil rings. Biochemistry. 1974 Jan 15;13(2):369–372. doi: 10.1021/bi00699a023. [DOI] [PubMed] [Google Scholar]
  10. Seno T., Agris P. F., Söll D. Involvement of the anticodon region of Escherichia coli tRNAGln and tRNAGlu in the specific interaction with cognate aminoacyl-tRNA synthetase. Alteration of the 2-thiouridine derivatives located in the anticodon of the tRNAs by BrCN or sulfur deprivation. Biochim Biophys Acta. 1974 May 31;349(3):328–338. doi: 10.1016/0005-2787(74)90120-8. [DOI] [PubMed] [Google Scholar]
  11. Tompson J. G., Agris P. F. Production of specific site probes of tRNA structure by enrichment with carbon 13 at particular locations. Nucleic Acids Res. 1979 Oct 10;7(3):765–779. doi: 10.1093/nar/7.3.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Tompson J. G., Hayashi F., Paukstelis J. V., Loeppky R. N., Agris P. F. Complete nuclear magnetic resonance signal assignments and initial structural studies of [13C]methyl-enriched transfer ribonucleic acid. Biochemistry. 1979 May 15;18(10):2079–2085. doi: 10.1021/bi00577a037. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES