Abstract
Bacillus Q, which is closely related to B. subtilis, contains at least six different precursors of 5S rRNA. The complete nucleotide sequences of four of these precursors, as well as the major part of the sequence of a fifth one, have been determined. They all contain the same 5'-terminal non-conserved segment which is to a large degree homologous with the corresponding segment of the B. subtilis p5S RNAs (Sogin, M.L., Pace, N.R., Rosenberg, M., Weissman, S.M. (1976) J. Biol. Chem. 251, 3480-3488). On the other hand the 3'-terminal non-conserved sequences of the various Bacillus Q precursors show considerable differences both in length and in nucleotide sequence, while there is also little or no homology with the 3'-terminal non-conserved sequence of the B. subtilis precursors. Bacillus Q p5S RNAs do not possess tetranucleotide repeats around the sites which are cleaved during maturation, as does B. subtilis p5S RNA. Like in B. subtilis, however, the cleavage sites are contained within a double-helical region of the precursor molecules. Crude RNAse M5 isolated from various Bacillus strains can maturate the Bacillus Q p5S RNAs with high efficiency. Despite considerable differences in primary structure between the precursors from the various strains, each RNAs M5 preparation can maturate all these precursors with about the same efficiency.
Full text
PDF![2193](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f136/324072/f29074af5142/nar00427-0083.png)
![2194](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f136/324072/29e1ab963877/nar00427-0084.png)
![2195](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f136/324072/58d0c09771b0/nar00427-0085.png)
![2196](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f136/324072/4039b890bf64/nar00427-0086.png)
![2197](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f136/324072/444c385c9585/nar00427-0087.png)
![2198](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f136/324072/1b775d0a0cc1/nar00427-0088.png)
![2199](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f136/324072/b7bb0571a13a/nar00427-0089.png)
![2200](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f136/324072/6028075f89b8/nar00427-0090.png)
![2201](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f136/324072/827f4b279d54/nar00427-0091.png)
![2202](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f136/324072/fea0adedaee2/nar00427-0092.png)
![2203](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f136/324072/761a129790d5/nar00427-0093.png)
![2204](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f136/324072/673a950c42d2/nar00427-0094.png)
![2205](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f136/324072/e3a669ce6389/nar00427-0095.png)
![2206](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f136/324072/437936bd61ad/nar00427-0096.png)
![2207](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f136/324072/df64127308d5/nar00427-0097.png)
![2208](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f136/324072/90a5d2fc7956/nar00427-0098.png)
![2209](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f136/324072/0090f04d8ea4/nar00427-0099.png)
![2210](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f136/324072/8f7dc9aacf36/nar00427-0100.png)
![2211](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f136/324072/de6155f25543/nar00427-0101.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adhya S., Gottesman M. Control of transcription termination. Annu Rev Biochem. 1978;47:967–996. doi: 10.1146/annurev.bi.47.070178.004535. [DOI] [PubMed] [Google Scholar]
- Brownlee G. G., Sanger F. Chromatography of 32P-labelled oligonucleotides on thin layers of DEAE-cellulose. Eur J Biochem. 1969 Dec;11(2):395–399. doi: 10.1111/j.1432-1033.1969.tb00786.x. [DOI] [PubMed] [Google Scholar]
- Forget B. G., Jordan B. 5S RNA synthesized by Escherichia coli in presence of chloramphenicol: different 5'-terminal sequences. Science. 1970 Jan 23;167(3917):382–384. doi: 10.1126/science.167.3917.382. [DOI] [PubMed] [Google Scholar]
- Fox G. E., Woese C. R. 5S RNA secondary structure. Nature. 1975 Aug 7;256(5517):505–507. doi: 10.1038/256505a0. [DOI] [PubMed] [Google Scholar]
- Ghora B. K., Apirion D. Structural analysis and in vitro processing to p5 rRNA of a 9S RNA molecule isolated from an rne mutant of E. coli. Cell. 1978 Nov;15(3):1055–1066. doi: 10.1016/0092-8674(78)90289-1. [DOI] [PubMed] [Google Scholar]
- Loening U. E. The fractionation of high-molecular-weight ribonucleic acid by polyacrylamide-gel electrophoresis. Biochem J. 1967 Jan;102(1):251–257. doi: 10.1042/bj1020251. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meyhack B., Pace B., Pace N. R. Involvement of precursor-specific segments in the in vitro maturation of Bacillus subtilis precursor 5S ribosomal RNA. Biochemistry. 1977 Nov 15;16(23):5009–5015. doi: 10.1021/bi00642a011. [DOI] [PubMed] [Google Scholar]
- Meyhack B., Pace B., Uhlenbeck O. C., Pace N. R. Use of T4 RNA ligase to construct model substrates for a ribosomal RNA maturation endonuclease. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3045–3049. doi: 10.1073/pnas.75.7.3045. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meyhack B., Pace N. R. Involvement of the mature domain in the in vitro maturation of Bacillus subtilis precursor 5S ribosomal RNA. Biochemistry. 1978 Dec 26;17(26):5804–5810. doi: 10.1021/bi00619a030. [DOI] [PubMed] [Google Scholar]
- Monier R., Feunteun J., Forget B., Jordan B., Reynier M., Varricchio F. 5 S RNA and the assembly of bacterial ribosomes. Cold Spring Harb Symp Quant Biol. 1969;34:139–148. doi: 10.1101/sqb.1969.034.01.020. [DOI] [PubMed] [Google Scholar]
- Pace N. R., Pato M. L., McKibbin J., Radcliffe C. W. Precursors of 5 S ribosomal RNA in Bacillus subtilis. J Mol Biol. 1973 Apr 25;75(4):619–631. doi: 10.1016/0022-2836(73)90296-9. [DOI] [PubMed] [Google Scholar]
- Raué H. A., Rosner A., Planta R. J. Heterogeneity of the genes coding for 5 S RNA in three related strains of the genus Bacillus. Mol Gen Genet. 1977 Nov 14;156(2):185–193. doi: 10.1007/BF00283491. [DOI] [PubMed] [Google Scholar]
- Raué H. A., Stoof T. J., Planta R. J. Nucleotide sequence of 5-S RNA from Bacillus licheniformis. Eur J Biochem. 1975 Nov 1;59(1):35–42. doi: 10.1111/j.1432-1033.1975.tb02421.x. [DOI] [PubMed] [Google Scholar]
- Retèl J., Planta R. J. Ribosomal precursor RNA in Saccharomyces carlsbergensis. Eur J Biochem. 1967 Dec;3(2):248–258. doi: 10.1111/j.1432-1033.1967.tb19524.x. [DOI] [PubMed] [Google Scholar]
- Richards E. G., Coll J. A., Gratzer W. B. Disc electrophoresis of ribonucleic acid in polyacrylamide gels. Anal Biochem. 1965 Sep;12(3):452–471. doi: 10.1016/0003-2697(65)90212-5. [DOI] [PubMed] [Google Scholar]
- Sanger F., Brownlee G. G., Barrell B. G. A two-dimensional fractionation procedure for radioactive nucleotides. J Mol Biol. 1965 Sep;13(2):373–398. doi: 10.1016/s0022-2836(65)80104-8. [DOI] [PubMed] [Google Scholar]
- Sogin M. L., Pace B., Pace N. R. Partial purification and properties of a ribosomal RNA maturation endonuclease from Bacillus subtilis. J Biol Chem. 1977 Feb 25;252(4):1350–1357. [PubMed] [Google Scholar]
- Sogin M. L., Pace N. R. In vitro maturation of precursors of 5S ribosomal RNA from Bacillus subtilis. Nature. 1974 Dec 13;252(5484):598–600. doi: 10.1038/252598a0. [DOI] [PubMed] [Google Scholar]
- Sogin M. L., Pace N. R. Nucleotide sequence of 5 S ribosomal RNA precursor from Bacillus subtilis. J Biol Chem. 1976 Jun 10;251(11):3480–3488. [PubMed] [Google Scholar]
- Stahl D. A., Walker T. A., Meyhack B., Pace N. R. Precursor-specific nucleotide sequences can govern RNA folding. Cell. 1979 Dec;18(4):1133–1143. doi: 10.1016/0092-8674(79)90226-5. [DOI] [PubMed] [Google Scholar]
- Stoof T. J., De Regt V. C., Raué H. A., Planta R. J. Two precursor 5S RNA species in Bacillus licheniformis: characterization and partial analysis of primary structure. FEBS Lett. 1974 Dec 15;49(2):237–241. doi: 10.1016/0014-5793(74)80520-x. [DOI] [PubMed] [Google Scholar]
- Vigne R., Jordan B. R. Conformational analysis of RNA molecules by partial RNAse digestion and two dimensional acrylamide gel electrophoresis. Application to E. coli 5S RNA. Biochimie. 1971;53(9):981–986. doi: 10.1016/s0300-9084(71)80066-4. [DOI] [PubMed] [Google Scholar]
- Woese C., Sogin M., Stahl D., Lewis B. J., Bonen L. A comparison of the 16S ribosomal RNAs from mesophilic and thermophilic bacilli: some modifications in the Sanger method for RNA sequencing. J Mol Evol. 1976 Apr 9;7(3):197–213. doi: 10.1007/BF01731489. [DOI] [PubMed] [Google Scholar]
- Young R. A. Transcription termination in the Escherichia coli ribosomal RNA operon rrnC. J Biol Chem. 1979 Dec 25;254(24):12725–12731. [PubMed] [Google Scholar]