Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1980 Jun 11;8(11):2517–2525. doi: 10.1093/nar/8.11.2517

Melting fine structure of filamentous fungus nuclear DNA.

A Szécsi, A Dobrovolszky
PMCID: PMC324098  PMID: 7443512

Abstract

Melting fine structure of the nuclear DNA isolated from the filamentous fungus Fusarium graminearum Schwabe is presented. Optical melting profiles of nuclear DNA were analyzed by using a combination of curve fitting and derivative techniques. The "melting components" were obtained from the derivative curve by a simple decomposition technique. Differential optical melting curves of unsheared nuclear DNA indicate the presence of 15 "melting components" in filamentous fungus nuclear genome. It should be emphasized that the "melting components" observed here are different from the "thermalites" which can be observed in bacteriophage DNA. The "melting components" reported here represent the separately melting of large "blocks" of fungus nuclear DNA.

Full text

PDF
2517

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ansevin A. T., Vizard D. L., Brown B. W., McConathy J. High-resolution thermal denaturation of DNA. I. Theoretical and practical considerations for the resolution of thermal subtransitions. Biopolymers. 1976 Jan;15(1):153–174. doi: 10.1002/bip.1976.360150111. [DOI] [PubMed] [Google Scholar]
  2. Blake R. D., Lefoley S. G. Spectral analysis of high resolution direct-derivative melting curves of DNA for instantaneous and total base composition. Biochim Biophys Acta. 1978 Apr 27;518(2):233–246. doi: 10.1016/0005-2787(78)90180-6. [DOI] [PubMed] [Google Scholar]
  3. Britten R. J., Kohne D. E. Repeated sequences in DNA. Hundreds of thousands of copies of DNA sequences have been incorporated into the genomes of higher organisms. Science. 1968 Aug 9;161(3841):529–540. doi: 10.1126/science.161.3841.529. [DOI] [PubMed] [Google Scholar]
  4. Cuellar R. E., Ford G. A., Briggs W. R., Thompson W. F. Application of higher derivative techniques to analysis of high-resolution thermal denaturation profiles of reassociated repetitive DNA. Proc Natl Acad Sci U S A. 1978 Dec;75(12):6026–6030. doi: 10.1073/pnas.75.12.6026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dons J. J., de Vries O. M., Wessels J. G. Characterization of the genome of the basidiomycete Schizophyllum commune. Biochim Biophys Acta. 1979 Jun 20;563(1):100–112. doi: 10.1016/0005-2787(79)90011-x. [DOI] [PubMed] [Google Scholar]
  6. Frank-Kamenetskii M. D., Lazurkin Y. S. Conformational changes in DNA molecules. Annu Rev Biophys Bioeng. 1974;3(0):127–150. doi: 10.1146/annurev.bb.03.060174.001015. [DOI] [PubMed] [Google Scholar]
  7. Gotoh O., Husimi Y., Yabuki S., Wada A. Hyperfine structure in melting profile of bacteriophage lambda DNA. Biopolymers. 1976 Apr;15(4):655–670. doi: 10.1002/bip.1976.360150406. [DOI] [PubMed] [Google Scholar]
  8. Guttmann T., Vítek A., Pivec L. High resolution thermal denaturation of mammalian DNAs. Nucleic Acids Res. 1977 Feb;4(2):285–297. doi: 10.1093/nar/4.2.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lazurkin Y. S., Frank-Kamenetskii M. D., Trifonov E. N. Melting of DNA: its study and application as a research method. Biopolymers. 1970 Nov;9(11):1253–1306. doi: 10.1002/bip.1970.360091102. [DOI] [PubMed] [Google Scholar]
  10. Lyubchenko Y. L., Frank-Kamenetskii M. D., Vologodskii A. V., Lazurkin Y. S., Gause G. G., Jr Fine structure of DNA melting curves. Biopolymers. 1976 Jun;15(6):1019–1036. doi: 10.1002/bip.1976.360150602. [DOI] [PubMed] [Google Scholar]
  11. Mayer F., Lotz W., Lang D. Electron microscopy study of length and partial denaturation of Rhizobium bacteriophage DNA. J Virol. 1973 Jun;11(6):946–952. doi: 10.1128/jvi.11.6.946-952.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mayfield J. E. A comparison of the differential DNA melting profiles with the CsCl density profiles of DNA from Escherichia coli, cow, mouse, rat and chicken. Biochim Biophys Acta. 1977 Jul 15;477(2):97–101. doi: 10.1016/0005-2787(77)90225-8. [DOI] [PubMed] [Google Scholar]
  13. Pivec L., Horská K., Vítek A., Doskocil J. Plurimodal distribution of base composition in DNA of some higher plants. Biochim Biophys Acta. 1974 Mar 8;340(2):199–206. doi: 10.1016/0005-2787(74)90113-0. [DOI] [PubMed] [Google Scholar]
  14. Pivec L., Pivcová H., Sormová Z. Plurimodal heterogeneity of base composition of DNA isolated from Bacillus subtilis. Biochim Biophys Acta. 1970 Aug 8;213(2):343–351. doi: 10.1016/0005-2787(70)90042-0. [DOI] [PubMed] [Google Scholar]
  15. Tong B. Y., Battersby S. J. Melting curves, denaturation maps, and genetic map of phiX174: their relations and applications. Biopolymers. 1979 Aug;18(8):1917–1936. doi: 10.1002/bip.1979.360180808. [DOI] [PubMed] [Google Scholar]
  16. Vizard D. L., Ansevin A. T. High resolution thermal denaturation of DNA: thermalites of bacteriophage DNA. Biochemistry. 1976 Feb 24;15(4):741–750. doi: 10.1021/bi00649a004. [DOI] [PubMed] [Google Scholar]
  17. Yabuki S., Gotoh O., Wada A. Fine structures in denaturation curves of bacteriophage lambda DNA. Their relation to the intramolecular heterogeneity in base compositon. Biochim Biophys Acta. 1975 Jul 7;395(3):258–273. doi: 10.1016/0005-2787(75)90196-3. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES