Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1980 Aug 25;8(16):3535–3551. doi: 10.1093/nar/8.16.3535

The binding of histones H1 and H5 to chromatin in chicken erythrocyte nuclei.

N M Kumar, I O Walker
PMCID: PMC324173  PMID: 7433099

Abstract

The binding curves of histones H1 and H5 to chromatin in nuclei have been determined by a novel method which utilises the differential properties of free and bound histones on cross-linking with formaldehyde. The dissociation is thermodynamically reversible as a function of [NaCl]. The binding curves are independent of temperature over the range 4 degrees - 37 degrees C and independent of pH over the range 5.0 to 9.0. The curves are sigmoid, indicating co-operative dissociation with NaCl. The standard free energy of dissociation in 1 M NaCl for H1 is 0.5 Kcals/mole and for H5 is 3.5 Kcals/mole.

Full text

PDF
3535

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradbury E. M., Cary P. D., Chapman G. E., Crane-Robinson C., Danby S. E., Rattle H. W., Boublik M., Palau J., Aviles F. J. Studies on the role and mode of operation of the very-lysine-rich histone H1 (F1) in eukaryote chromatin. The conformation of histone H1. Eur J Biochem. 1975 Apr 1;52(3):605–613. doi: 10.1111/j.1432-1033.1975.tb04032.x. [DOI] [PubMed] [Google Scholar]
  2. Bradbury E. M., Chapman G. E., Danby S. E., Hartman P. G., Riches P. L. Studies on the role and mode of operation of the very-lysine-rich histone H1 (F1) in eukaryote chromatin. The properties of the N-terminal and C-terminal halves of histone H1. Eur J Biochem. 1975 Sep 15;57(2):521–528. doi: 10.1111/j.1432-1033.1975.tb02327.x. [DOI] [PubMed] [Google Scholar]
  3. Bradbury E. M., Danby S. E., Rattle H. W., Giancotti V. Studies on the role and mode of operation of the very-lysine-rich histone H1 (F1) in eukaryote chromatin. Histone H1 in chromatin and in H1 - DNA complexes. Eur J Biochem. 1975 Sep 1;57(1):97–105. doi: 10.1111/j.1432-1033.1975.tb02280.x. [DOI] [PubMed] [Google Scholar]
  4. Brasch K. Studies on the role of histones HI (f1) and H5 (f2c) in chromatin structure. Exp Cell Res. 1976 Sep;101(2):396–410. doi: 10.1016/0014-4827(76)90391-8. [DOI] [PubMed] [Google Scholar]
  5. Burton D. R., Butler M. J., Hyde J. E., Phillips D., Skidmore C. J., Walker I. O. The interaction of core histones with DNA: equilibrium binding studies. Nucleic Acids Res. 1978 Oct;5(10):3643–3663. doi: 10.1093/nar/5.10.3643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chatterjee S., Walker I. O. The modification of deoxyribonucleohistone by trypsin and chymotrypsin. Eur J Biochem. 1973 May 2;34(3):519–526. doi: 10.1111/j.1432-1033.1973.tb02789.x. [DOI] [PubMed] [Google Scholar]
  7. Fasman G. D., Schaffhausen B., Goldsmith L., Adler A. Conformational changes associated with f-1 histone-deoxyribonucleic acid complexes. Circular dichroism studies. Biochemistry. 1970 Jul 7;9(14):2814–2822. doi: 10.1021/bi00816a010. [DOI] [PubMed] [Google Scholar]
  8. Finch J. T., Klug A. Solenoidal model for superstructure in chromatin. Proc Natl Acad Sci U S A. 1976 Jun;73(6):1897–1901. doi: 10.1073/pnas.73.6.1897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gaubatz J. W., Chalkley R. Distribution of H1 histone in chromatin digested by micrococcal nuclease. Nucleic Acids Res. 1977 Oct;4(10):3281–3301. doi: 10.1093/nar/4.10.3281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Henson P., Walker I. O. The partial dissociation of nucleohistone by salts. Hydrodynamic and denaturation studies. Eur J Biochem. 1970 Jun;14(2):345–350. doi: 10.1111/j.1432-1033.1970.tb00295.x. [DOI] [PubMed] [Google Scholar]
  11. Hyde J. E., Walker I. O. Covalent cross-linking of histones in chromatin. FEBS Lett. 1975 Feb 1;50(2):150–154. doi: 10.1016/0014-5793(75)80477-7. [DOI] [PubMed] [Google Scholar]
  12. LEE M. F., WALKER I. O., PEACOCKE A. R. Thymus deoxyribonucleoprotein. IV. Thermal denaturation. Biochim Biophys Acta. 1963 Jun 25;72:310–316. doi: 10.1016/0006-3002(63)90246-4. [DOI] [PubMed] [Google Scholar]
  13. Latt S. A., Sober H. A. Protein-nucleic acid interactions. 3. Cation effect on binding strength and specificity. Biochemistry. 1967 Oct;6(10):3307–3314. doi: 10.1021/bi00862a041. [DOI] [PubMed] [Google Scholar]
  14. Manning G. S. The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides. Q Rev Biophys. 1978 May;11(2):179–246. doi: 10.1017/s0033583500002031. [DOI] [PubMed] [Google Scholar]
  15. Marks D. B., Keller B. J. Proteolytic digestion of histones indicates that the nucleosomes of nuclei and of sheared chromatin are similar. Biochem Biophys Res Commun. 1977 Jan 10;74(1):134–139. doi: 10.1016/0006-291x(77)91385-7. [DOI] [PubMed] [Google Scholar]
  16. Ohlenbusch H. H., Olivera B. M., Tuan D., Davidson N. Selective dissociation of histones from calf thymus nucleoprotein. J Mol Biol. 1967 Apr 28;25(2):299–315. doi: 10.1016/0022-2836(67)90143-x. [DOI] [PubMed] [Google Scholar]
  17. Olins D. E., Olins A. L. Physical studies of isolated eucaryotic nuclei. J Cell Biol. 1972 Jun;53(3):715–736. doi: 10.1083/jcb.53.3.715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Record M. T., Jr, Anderson C. F., Lohman T. M. Thermodynamic analysis of ion effects on the binding and conformational equilibria of proteins and nucleic acids: the roles of ion association or release, screening, and ion effects on water activity. Q Rev Biophys. 1978 May;11(2):103–178. doi: 10.1017/s003358350000202x. [DOI] [PubMed] [Google Scholar]
  19. Seeburg P. H., Nüsslein C., Schaller H. Interaction of RNA polymerase with promoters from bacteriophage fd. Eur J Biochem. 1977 Mar 15;74(1):107–113. doi: 10.1111/j.1432-1033.1977.tb11372.x. [DOI] [PubMed] [Google Scholar]
  20. Shaw B. R., Herman T. M., Kovacic R. T., Beaudreau G. S., Van Holde K. E. Analysis of subunit organization in chicken erythrocyte chromatin. Proc Natl Acad Sci U S A. 1976 Feb;73(2):505–509. doi: 10.1073/pnas.73.2.505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Steinmetz M., Streeck R. E., Zachau H. G. Reconstituted histone--DNA complexes. Philos Trans R Soc Lond B Biol Sci. 1978 May 11;283(997):259–268. doi: 10.1098/rstb.1978.0022. [DOI] [PubMed] [Google Scholar]
  22. Tack L. O., Simpson R. T. Location of histone lysyl residues modified by in vitro acetylation of chromatin. Biochemistry. 1979 Jul 10;18(14):3110–3118. doi: 10.1021/bi00581a031. [DOI] [PubMed] [Google Scholar]
  23. Weintraub H. The nucleosome repeat length increases during erythropoiesis in the chick. Nucleic Acids Res. 1978 Apr;5(4):1179–1188. doi: 10.1093/nar/5.4.1179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Weintraub H., Van Lente F. Dissection of chromosome structure with trypsin and nucleases. Proc Natl Acad Sci U S A. 1974 Oct;71(10):4249–4253. doi: 10.1073/pnas.71.10.4249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wilhelm X., Champagne M. Dissociation de la nucléoprotéine d'érythrocytes de poulets par les sels. Eur J Biochem. 1969 Aug;10(1):102–109. [PubMed] [Google Scholar]
  26. deHaseth P. L., Lohman T. M., Burgess R. R., Record M. T., Jr Nonspecific interactions of Escherichia coli RNA polymerase with native and denatured DNA: differences in the binding behavior of core and holoenzyme. Biochemistry. 1978 May 2;17(9):1612–1622. doi: 10.1021/bi00602a006. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES