Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1980 Sep 11;8(17):3875–3894. doi: 10.1093/nar/8.17.3875

Interspersion of repetitive with repetitive sequences in an amphibian, Rana berlandieri.

D E Graham, K E Schanke
PMCID: PMC324201  PMID: 6969394

Abstract

When conventional genome arrangement analyses performed on R. berlandieri DNA at a normal (60 degrees C) and a high (75 degrees C) reassociation temperature were compared, an additional interspersion pattern was detected which indicates that different classes of repetitive sequences are closely interspersed with each other. Our results further suggest that the genomic abundance of purified (or cloned) repetitive sequences can be accurately determined by solution hybridization with genomic DNA only when the reassociation is performed at a relatively high temperature (Tm - 10 degrees C).

Full text

PDF
3875

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bendich A. J., Anderson R. S. Characterization of families of repeated DNA sequences from four vascular plants. Biochemistry. 1977 Oct 18;16(21):4655–4663. doi: 10.1021/bi00640a020. [DOI] [PubMed] [Google Scholar]
  2. Bonner T. I., Brenner D. J., Neufeld B. R., Britten R. J. Reduction in the rate of DNA reassociation by sequence divergence. J Mol Biol. 1973 Dec 5;81(2):123–135. doi: 10.1016/0022-2836(73)90184-8. [DOI] [PubMed] [Google Scholar]
  3. Braun B. A., Schanke K. E., Graham D. E. Isolation of discrete repetitive sequence classes from Xenopus DNA by high temperature reassociation. Nucleic Acids Res. 1978 Nov;5(11):4283–4304. doi: 10.1093/nar/5.11.4283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Britten R. J., Davidson E. H. DNA sequence arrangement and preliminary evidence on its evolution. Fed Proc. 1976 Aug;35(10):2151–2157. [PubMed] [Google Scholar]
  5. Britten R. J., Graham D. E., Eden F. C., Painchaud D. M., Davidson E. H. Evolutionary divergence and length of repetitive sequences in sea urchin DNA. J Mol Evol. 1976 Dec 31;9(1):1–23. doi: 10.1007/BF01796119. [DOI] [PubMed] [Google Scholar]
  6. Britten R. J., Graham D. E., Neufeld B. R. Analysis of repeating DNA sequences by reassociation. Methods Enzymol. 1974;29:363–418. doi: 10.1016/0076-6879(74)29033-5. [DOI] [PubMed] [Google Scholar]
  7. Case S. T., Baker R. F. Investigation into the use of Aspergillus oryzae S1 nuclease in the presence of solvents which destabilize or prevent DNA secondary structure: formaldehyde, formamide, and glyoxal. Anal Biochem. 1975 Apr;64(2):477–484. doi: 10.1016/0003-2697(75)90457-1. [DOI] [PubMed] [Google Scholar]
  8. Chaudhari N., Craig S. P. Internal organization of long repetitive DNA sequences in sea urchin genomes. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6101–6105. doi: 10.1073/pnas.76.12.6101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Conger A. D., Clinton J. H. Nuclear volumes, DNA contents, and radiosensitivity in whole-body-irradiated amphibians. Radiat Res. 1973 Apr;54(1):69–101. [PubMed] [Google Scholar]
  10. Davidson E. H., Graham D. E., Neufeld B. R., Chamberlin M. E., Amenson C. S., Hough B. R., Britten R. J. Arrangement and characterization of repetitive sequence elements in animal DNAs. Cold Spring Harb Symp Quant Biol. 1974;38:295–301. doi: 10.1101/sqb.1974.038.01.033. [DOI] [PubMed] [Google Scholar]
  11. Davidson E. H., Hough B. R., Amenson C. S., Britten R. J. General interspersion of repetitive with non-repetitive sequence elements in the DNA of Xenopus. J Mol Biol. 1973 Jun 15;77(1):1–23. doi: 10.1016/0022-2836(73)90359-8. [DOI] [PubMed] [Google Scholar]
  12. Dawid I. B. Deoxyribonucleic acid in amphibian eggs. J Mol Biol. 1965 Jul;12(3):581–599. doi: 10.1016/s0022-2836(65)80313-8. [DOI] [PubMed] [Google Scholar]
  13. Goldberg R. B., Crain W. R., Ruderman J. V., Moore G. P., Barnett T. R., Higgins R. C., Gelfand R. A., Galau G. A., Britten R. J., Davidson E. H. DNA sequence organization in the genomes of five marine invertebrates. Chromosoma. 1975 Jul 21;51(3):225–251. doi: 10.1007/BF00284817. [DOI] [PubMed] [Google Scholar]
  14. Graham D. E. The isolation of high molecular weight DNA from whole organisms or large tissue masses. Anal Biochem. 1978 Apr;85(2):609–613. doi: 10.1016/0003-2697(78)90262-2. [DOI] [PubMed] [Google Scholar]
  15. Inman R. B., Schnös M. Partial denaturation of thymine- and 5-bromouracil-containing lambda DNA in alkali. J Mol Biol. 1970 Apr 14;49(1):93–98. doi: 10.1016/0022-2836(70)90378-5. [DOI] [PubMed] [Google Scholar]
  16. Kelly R. B., Cozzarelli N. R., Deutscher M. P., Lehman I. R., Kornberg A. Enzymatic synthesis of deoxyribonucleic acid. XXXII. Replication of duplex deoxyribonucleic acid by polymerase at a single strand break. J Biol Chem. 1970 Jan 10;245(1):39–45. [PubMed] [Google Scholar]
  17. Sachs D. H., Painter E. Improved flow rates with porous sephadex gels. Science. 1972 Feb 18;175(4023):781–782. doi: 10.1126/science.175.4023.781. [DOI] [PubMed] [Google Scholar]
  18. Vogt V. M. Purification and further properties of single-strand-specific nuclease from Aspergillus oryzae. Eur J Biochem. 1973 Feb 15;33(1):192–200. doi: 10.1111/j.1432-1033.1973.tb02669.x. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES