Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1980 Nov 25;8(22):5411–5421. doi: 10.1093/nar/8.22.5411

Structural features of Bacillus precursor 5S RNA involved in the interaction with RNAase M5.

W J Stiekema, H A Raué, M M Duin, R J Planta
PMCID: PMC324310  PMID: 6162151

Abstract

Mature 5S (m5S) RNA from Bacillus licheniformis specifically and almost completely inhibits in vitro maturation of bacillus precursor 5S (p5S) RNA, showing that the maturation enzyme RNAase M5 can recognize Bacillus m5S RNA. E. coli m5S RNA is a much less efficient inhibitor, whereas S. carlsbergensis 5S RNA inhibits maturation by about 70%. The differences in inhibition can be correlated with the position of the sequence UAGG (residues 101-104 in B. licheniformis m5S RNA) relative to the double-helical region formed by the 5'- and 3'-terminal sequences (molecular stalk) of m5S RNA. Recent experiments by Meyhack and Pace (Biochemistry 17 (1980) 5804-5810) demonstrated this UAGG sequence to be indispensable for processing of p5S RNA. Other elements of secondary and/or tertiary structure are also required, however. The effect of artificially constructed "5S RNA" molecules having defined disturbances in the base-pairing within the molecular stalk on in vitro maturation shows that base-pairing in the immediate neighbourhood of the bonds to be cleaved during maturation is crucial to recognition of p5S RNA by RNAase M5. G.U pairs are tolerated in this region, however, without loss of efficiency in maturation. Base-pairing does not have to extend throughout the complete molecular stalk. The introduction of an A/C combination at the end of the molecular stalk removed from the bonds cleaved by RNAase M5 does not significantly impair the efficiency of maturation.

Full text

PDF
5411

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abelson J. RNA processing and the intervening sequence problem. Annu Rev Biochem. 1979;48:1035–1069. doi: 10.1146/annurev.bi.48.070179.005131. [DOI] [PubMed] [Google Scholar]
  2. Bothwell A. L., Stark B. C., Altman S. Ribonuclease P substrate specificity: cleavage of a bacteriophage phi80-induced RNA. Proc Natl Acad Sci U S A. 1976 Jun;73(6):1912–1916. doi: 10.1073/pnas.73.6.1912. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bram R. J., Young R. A., Steitz J. A. The ribonuclease III site flanking 23S sequences in the 30S ribosomal precursor RNA of E. coli. Cell. 1980 Feb;19(2):393–401. doi: 10.1016/0092-8674(80)90513-9. [DOI] [PubMed] [Google Scholar]
  4. Douthwaite S., Garrett R. A., Wagner R., Feunteun J. A ribonuclease-resistant region of 5S RNA and its relation to the RNA binding sites of proteins L18 and L25. Nucleic Acids Res. 1979 Jun 11;6(7):2453–2470. doi: 10.1093/nar/6.7.2453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Erdmann V. A. Collection of published 5S and 5.8S rRNA sequences and their precursors. Nucleic Acids Res. 1980 Jan 11;8(1):r31–r47. doi: 10.1093/nar/8.1.197-b. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Erdmann V. A. Structure and function of 5S and 5.8 S RNA. Prog Nucleic Acid Res Mol Biol. 1976;18:45–90. [PubMed] [Google Scholar]
  7. Fox G. E., Woese C. R. 5S RNA secondary structure. Nature. 1975 Aug 7;256(5517):505–507. doi: 10.1038/256505a0. [DOI] [PubMed] [Google Scholar]
  8. Hassur S. M., Whitlock H. W., Jr UV shadowing--a new and convenient method for the location of ultraviolet-absorbing species in polyacrylamide gels. Anal Biochem. 1974 May;59(1):162–164. doi: 10.1016/0003-2697(74)90020-7. [DOI] [PubMed] [Google Scholar]
  9. Kole R., Baer M. F., Stark B. C., Altman S. E. coli RNAase P has a required RNA component. Cell. 1980 Apr;19(4):881–887. doi: 10.1016/0092-8674(80)90079-3. [DOI] [PubMed] [Google Scholar]
  10. Loening U. E. The fractionation of high-molecular-weight ribonucleic acid by polyacrylamide-gel electrophoresis. Biochem J. 1967 Jan;102(1):251–257. doi: 10.1042/bj1020251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Meyhack B., Pace B., Pace N. R. Involvement of precursor-specific segments in the in vitro maturation of Bacillus subtilis precursor 5S ribosomal RNA. Biochemistry. 1977 Nov 15;16(23):5009–5015. doi: 10.1021/bi00642a011. [DOI] [PubMed] [Google Scholar]
  12. Meyhack B., Pace B., Uhlenbeck O. C., Pace N. R. Use of T4 RNA ligase to construct model substrates for a ribosomal RNA maturation endonuclease. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3045–3049. doi: 10.1073/pnas.75.7.3045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Meyhack B., Pace N. R. Involvement of the mature domain in the in vitro maturation of Bacillus subtilis precursor 5S ribosomal RNA. Biochemistry. 1978 Dec 26;17(26):5804–5810. doi: 10.1021/bi00619a030. [DOI] [PubMed] [Google Scholar]
  14. Peebles C. L., Ogden R. C., Knapp G., Abelson J. Splicing of yeast tRNA precursors: a two-stage reaction. Cell. 1979 Sep;18(1):27–35. doi: 10.1016/0092-8674(79)90350-7. [DOI] [PubMed] [Google Scholar]
  15. Perry R. P. Processing of RNA. Annu Rev Biochem. 1976;45:605–629. doi: 10.1146/annurev.bi.45.070176.003133. [DOI] [PubMed] [Google Scholar]
  16. Raué H. A., Heerschap A., Planta R. J. Occurrence in Bacillus licheniformis of two species of 5-S RNA with multiple differences in primary structure. Eur J Biochem. 1976 Sep;68(1):169–176. doi: 10.1111/j.1432-1033.1976.tb10775.x. [DOI] [PubMed] [Google Scholar]
  17. Raué H. A., Rosner A., Planta R. J. Heterogeneity of the genes coding for 5 S RNA in three related strains of the genus Bacillus. Mol Gen Genet. 1977 Nov 14;156(2):185–193. doi: 10.1007/BF00283491. [DOI] [PubMed] [Google Scholar]
  18. Raué H. A., Stoof T. J., Planta R. J. Nucleotide sequence of 5-S RNA from Bacillus licheniformis. Eur J Biochem. 1975 Nov 1;59(1):35–42. doi: 10.1111/j.1432-1033.1975.tb02421.x. [DOI] [PubMed] [Google Scholar]
  19. Robertson H. D., Dunn J. J. Ribonucleic acid processing activity of Escherichia coli ribonuclease III. J Biol Chem. 1975 Apr 25;250(8):3050–3056. [PubMed] [Google Scholar]
  20. Sogin M. L., Pace B., Pace N. R. Partial purification and properties of a ribosomal RNA maturation endonuclease from Bacillus subtilis. J Biol Chem. 1977 Feb 25;252(4):1350–1357. [PubMed] [Google Scholar]
  21. Sogin M. L., Pace N. R. In vitro maturation of precursors of 5S ribosomal RNA from Bacillus subtilis. Nature. 1974 Dec 13;252(5484):598–600. doi: 10.1038/252598a0. [DOI] [PubMed] [Google Scholar]
  22. Stiekema W. J., Raué H. A., Planta R. J. Sequence analysis and in vitro maturation of five precursor 5S RNAs from Bacillus Q. Nucleic Acids Res. 1980 May 24;8(10):2193–2211. doi: 10.1093/nar/8.10.2193. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES