Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1980 Dec 11;8(23):5767–5777. doi: 10.1093/nar/8.23.5767

The translocation inhibitor tuberactinomycin binds to nucleic acids and blocks the in vitro assembly of 50S subunits.

T Yamada, T Teshima, T Shiba, K H Nierhaus
PMCID: PMC324340  PMID: 6258151

Abstract

Binding studies were performed with a [14C]-labelled derivative of viomycin, tuberactinomycin 0 (TUM O). TUM O bound to 30S and 50S subunits. The binding component was the RNA, since ribosomal proteins did not bind the drug. Other RNAs such as tRNA, phage RNA (MS2), and homopolynucleotides also bound the drug. Striking differences in the binding capacity of the various homopolynucleotides were found. Poly(U) bound strongly, poly(G) and poly(C) bound intermediately, whereas poly(A) showed a very low binding. DNA also bound TUM O, although with native DNA the binding was only weak. Finally the effects of viomycin on the assembly in vitro of the 50S subunit from E. coli were tested. A very strong inhibition was found: when the reconstitution was performed at 0.5 x 10(-6) M viomycin the particles formed sedimented at about 50S, but showed a residual activity of less than 10%. The inhibitory power of viomycin with respect to the in vitro assembly is more pronounced than that found in in vitro systems for protein synthesis.

Full text

PDF
5767

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Biswas D. K., Gorini L. The attachment site of streptomycin to the 30S ribosomal subunit. Proc Natl Acad Sci U S A. 1972 Aug;69(8):2141–2144. doi: 10.1073/pnas.69.8.2141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Choi E. C., Misumi M., Nishimura T., Tanaka N., Nomoto S., Teshima T., Shiba T. Viomycin resistance: alterations of either ribosomal subunit affect the binding of the antibiotic to the pair subunit and the entire ribosome becomes resistant to the drug. Biochem Biophys Res Commun. 1979 Apr 13;87(3):904–910. doi: 10.1016/0006-291x(79)92043-6. [DOI] [PubMed] [Google Scholar]
  3. Davies J., Gorini L., Davis B. D. Misreading of RNA codewords induced by aminoglycoside antibiotics. Mol Pharmacol. 1965 Jul;1(1):93–106. [PubMed] [Google Scholar]
  4. Jordan D. C., Yamamura Y., McKague M. E. Mode of action of viomycin on Rhizobium meliloti. Can J Microbiol. 1969 Sep;15(9):1005–1012. [PubMed] [Google Scholar]
  5. Liou Y. F., Tanaka N. Dual actions of viomycin on the ribosomal functions. Biochem Biophys Res Commun. 1976 Jul 26;71(2):477–483. doi: 10.1016/0006-291x(76)90812-3. [DOI] [PubMed] [Google Scholar]
  6. Mizuguchi Y., Suga K., Masuda K., Yamada T. Genetic and biochemical studies on drug-resistant mutants in Mycobacterium smegmatis. Jpn J Microbiol. 1974 Nov;18(6):457–462. doi: 10.1111/j.1348-0421.1974.tb00834.x. [DOI] [PubMed] [Google Scholar]
  7. Mizuguchi Y., Suga K., Yamada T. Interaction between 30 S ribosomal components in a viomycin resistant mutant of Mycobacterium smegmatis. Microbiol Immunol. 1979;23(7):595–604. doi: 10.1111/j.1348-0421.1979.tb00500.x. [DOI] [PubMed] [Google Scholar]
  8. Mizuguchi Y., Suga K., Yamada T. Interactions between viomycin resistance and streptomycin resistance on ribosomes of Mycobacterium smegmatis. Microbiol Immunol. 1979;23(7):581–594. doi: 10.1111/j.1348-0421.1979.tb00499.x. [DOI] [PubMed] [Google Scholar]
  9. Modolell J., Vázquez The inhibition of ribosomal translocation by viomycin. Eur J Biochem. 1977 Dec;81(3):491–497. doi: 10.1111/j.1432-1033.1977.tb11974.x. [DOI] [PubMed] [Google Scholar]
  10. Nashimoto H., Held W., Kaltschmidt E., Nomura M. Structure and function of bacterial ribosomes. XII. Accumulation of 21 s particles by some cold-sensitive mutants of Escherichia coli. J Mol Biol. 1971 Nov 28;62(1):121–138. doi: 10.1016/0022-2836(71)90135-5. [DOI] [PubMed] [Google Scholar]
  11. Nierhaus K. H., Dohme F. Total reconstitution of 50 S subunits from Escherichia coli ribosomes. Methods Enzymol. 1979;59:443–449. doi: 10.1016/0076-6879(79)59106-x. [DOI] [PubMed] [Google Scholar]
  12. Suga K., Mizuguchi Y. Mapping of antibiotic resistance markers in Mycobacterium smegmatis. Jpn J Microbiol. 1974 Mar;18(2):139–147. doi: 10.1111/j.1348-0421.1974.tb00802.x. [DOI] [PubMed] [Google Scholar]
  13. Teraoka H., Nierhaus K. H. Measurement of the binding of antibiotics to ribosomal particles by means of equilibrium dialysis. Methods Enzymol. 1979;59:862–866. doi: 10.1016/0076-6879(79)59131-9. [DOI] [PubMed] [Google Scholar]
  14. Yamada T., Bierhaus K. H. Viomycin favours the formation of 70S ribosome couples. Mol Gen Genet. 1978 May 31;161(3):261–265. doi: 10.1007/BF00330999. [DOI] [PubMed] [Google Scholar]
  15. Yamada T., Masuda K., Mizuguchi Y., Suga K. Altered ribosomes in antibiotic-resistant mutants of Mycobacterium smegmatis. Antimicrob Agents Chemother. 1976 May;9(5):817–823. doi: 10.1128/aac.9.5.817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Yamada T., Masuda K., Shoji K., Hori M. Analysis of ribosomes from viomycin-sensitive and -resistant strains of Mycobacterium smegmatis. J Bacteriol. 1972 Oct;112(1):1–6. doi: 10.1128/jb.112.1.1-6.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Yamada T., Masuda K., Shoji K., Hori M. Pleiotropic antibiotic resistance mutations associated with ribosomes and ribosomal subunits in Mycobacterium smegmatis. Antimicrob Agents Chemother. 1974 Jul;6(1):46–53. doi: 10.1128/aac.6.1.46. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Yamada T., Mizugichi Y., Nierhaus K. H., Wittmann H. G. Resistance to viomycin conferred by RNA of either ribosomal subunit. Nature. 1978 Oct 5;275(5679):460–461. doi: 10.1038/275460a0. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES