Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1980 Dec 11;8(23):5813–5824. doi: 10.1093/nar/8.23.5813

Dinucleotide codon-anticodon interaction as a minimum requirement for ribosomal aa-tRNA binding: stabilisation by viomycin of aa-tRNA in the A site.

R Lührmann
PMCID: PMC324343  PMID: 6162154

Abstract

The requirements for the decoding process at the ribosomal A site have been investigated in the presence of viomycin. For these studies natural mRNA was replaced either by the synthetic oligonucleotide A-U-G(-U)n, with 0 less than or equal to n less than or equal to 4, or by a physical mixture of the oligonucleotides A-U-G and various oligo(U) sequences. Thus the effect of the "removal" of selected covalent bonds from the sequence A-U-G(U)n could be studied. When the ribosomal P site contains tRNAMetf, then normally the full hexanucleotide "messenger" A-U-G-U-U-U is needed for the EF-Tu-mediated binding of Phe-tRNA into the A site. However in presence of viomycin the pentanucleotide A-U-G-U-U suffices for this. It is also possible in the presence of viomycin to replace A-U-G-U and U-U. In all the above systems the binding of Phe-tRNA required the presence of EF-Tu and GTP. The results suggest that viomycin reinforces interactions between aa-tRNA and the A site after the codon-anticodon recognition step.

Full text

PDF
5813

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arai K. I., Kawakita M., Kaziro Y. Studies on polypeptide elongation factors from Escherichia coli. II. Purification of factors Tu-guanosine diphosphate, Ts, and Tu-Ts, and crystallization of Tu-guanosine diphosphate and Tu-Ts. J Biol Chem. 1972 Nov 10;247(21):7029–7037. [PubMed] [Google Scholar]
  2. De Groot N., Panet A., Lapidot Y. The binding of purified Phe-tRNA and peptidyl-tRNA Phe to Escherichia coli ribosomes. Eur J Biochem. 1971 Dec 10;23(3):523–527. doi: 10.1111/j.1432-1033.1971.tb01649.x. [DOI] [PubMed] [Google Scholar]
  3. Erbe R. W., Nau M. M., Leder P. Translation and translocation of defined RNA messengers. J Mol Biol. 1969 Feb 14;39(3):441–460. doi: 10.1016/0022-2836(69)90137-5. [DOI] [PubMed] [Google Scholar]
  4. Gassen H. G., Schetters H., Matthaei H. Codon-anticodon interaction studied with oligonucleotides containing 3 -deazauridine, 4 -deoxyuridine or 3 -deaza- 4 -deoxyuridine. II. Ribosome binding of oligonucleotides and phenylalanyl-tRNA. Biochim Biophys Acta. 1972 Jul 31;272(4):560–567. doi: 10.1016/0005-2787(72)90511-4. [DOI] [PubMed] [Google Scholar]
  5. Hershey J. W., Thach R. E. Role of guanosine 5'-triphosphate in the initiation of Peptide synthesis, I. Synthesis of formylmethionyl-puromycin. Proc Natl Acad Sci U S A. 1967 Mar;57(3):759–766. doi: 10.1073/pnas.57.3.759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Liou Y. F., Tanaka N. Dual actions of viomycin on the ribosomal functions. Biochem Biophys Res Commun. 1976 Jul 26;71(2):477–483. doi: 10.1016/0006-291x(76)90812-3. [DOI] [PubMed] [Google Scholar]
  7. Lührmann R., Eckhardt H., Stöffler G. Codon-anticodon interaction at the ribosomal peptidyl-site. Nature. 1979 Aug 2;280(5721):423–425. doi: 10.1038/280423a0. [DOI] [PubMed] [Google Scholar]
  8. Misumi M., Tanaka N. Mechanism of inhibition of translocation by kanamycin and viomycin: a comparative study with fusidic acid. Biochem Biophys Res Commun. 1980 Jan 29;92(2):647–654. doi: 10.1016/0006-291x(80)90382-4. [DOI] [PubMed] [Google Scholar]
  9. Misumi M., Tanaka N., Shiba T. Binding of [14C]tuberactinomycin O, an antibiotic closely related to viomycin, to the bacterial ribosome. Biochem Biophys Res Commun. 1978 Jun 14;82(3):971–976. doi: 10.1016/0006-291x(78)90878-1. [DOI] [PubMed] [Google Scholar]
  10. Modolell J., Vázquez The inhibition of ribosomal translocation by viomycin. Eur J Biochem. 1977 Dec;81(3):491–497. doi: 10.1111/j.1432-1033.1977.tb11974.x. [DOI] [PubMed] [Google Scholar]
  11. Mohr S. C., Thach R. E. Application of ribonuclease T1 to the synthesis of oligoribonucleotides of defined base sequence. J Biol Chem. 1969 Dec 25;244(24):6566–6576. [PubMed] [Google Scholar]
  12. NIRENBERG M., LEDER P. RNA CODEWORDS AND PROTEIN SYNTHESIS. THE EFFECT OF TRINUCLEOTIDES UPON THE BINDING OF SRNA TO RIBOSOMES. Science. 1964 Sep 25;145(3639):1399–1407. doi: 10.1126/science.145.3639.1399. [DOI] [PubMed] [Google Scholar]
  13. Noll M., Hapke B., Schreier M. H., Noll H. Structural dynamics of bacterial ribosomes. I. Characterization of vacant couples and their relation to complexed ribosomes. J Mol Biol. 1973 Apr 5;75(2):281–294. doi: 10.1016/0022-2836(73)90021-1. [DOI] [PubMed] [Google Scholar]
  14. Springer M., Grunberg-Manago M. Characteristics of N-Ac-Phe-tRNA binding and its correlation with internal aminoacyl-tRNA recognition. Biochem Biophys Res Commun. 1972 Apr 28;47(2):477–484. doi: 10.1016/0006-291x(72)90739-5. [DOI] [PubMed] [Google Scholar]
  15. Turnowsky F., Högenauer G. Colicin E 3, an inactivating agent of the ribosomal A-site. Biochem Biophys Res Commun. 1973 Dec 19;55(4):1246–1254. doi: 10.1016/s0006-291x(73)80028-2. [DOI] [PubMed] [Google Scholar]
  16. Yamada T., Bierhaus K. H. Viomycin favours the formation of 70S ribosome couples. Mol Gen Genet. 1978 May 31;161(3):261–265. doi: 10.1007/BF00330999. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES