Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1980 Dec 11;8(23):5895–5912. doi: 10.1093/nar/8.23.5895

DNA strand specificity in promoter recognition by RNA polymerase.

C S Park, Z Hillel, C W Wu
PMCID: PMC324349  PMID: 7008032

Abstract

DNA strand and enzyme subunit specificities involved in the interaction between E. coli RNA polymerase and T7 DNA were studied by photo-crosslinking techniques. In non-specific enzyme-DNA complexes, subunits, sigma, beta, and beta' were crosslinked to both strands of the DNA. Under conditions leading to specific enzyme-promoter complexes, however, only sigma and beta subunits were crosslinked. The sigma subunit was crosslinked preferentially to the non-sense strand at promoter sites. No such strand specificity was observed for the beta subunit. These results provide insight into the molecular mechanism of promoter recognition and indicate that the interaction between RNA polymerase and DNA template is different at promoters and at non-specific sites.

Full text

PDF
5895

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bordier C., Dubochet J. Electron microscopic localization of the binding sites of Escherichia coli RNA polymerase in the early promoter region of T7 DNA. Eur J Biochem. 1974 May 15;44(2):617–624. doi: 10.1111/j.1432-1033.1974.tb03519.x. [DOI] [PubMed] [Google Scholar]
  2. Burgess R. R., Jendrisak J. J. A procedure for the rapid, large-scall purification of Escherichia coli DNA-dependent RNA polymerase involving Polymin P precipitation and DNA-cellulose chromatography. Biochemistry. 1975 Oct 21;14(21):4634–4638. doi: 10.1021/bi00692a011. [DOI] [PubMed] [Google Scholar]
  3. Chamberlin M. J., Ring J. Studies of the binding of Escherichia coli RNA polymerase to DNA. V. T7 RNA chain initiation by enzyme-DNA complexes. J Mol Biol. 1972 Sep 28;70(2):221–237. doi: 10.1016/0022-2836(72)90535-9. [DOI] [PubMed] [Google Scholar]
  4. Dunn J. J., Studier F. W. T7 early RNAs are generated by site-specific cleavages. Proc Natl Acad Sci U S A. 1973 May;70(5):1559–1563. doi: 10.1073/pnas.70.5.1559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Frischauf A. M., Scheit K. H. Affinity labeling of E. coli RNA polymerase with substrate and template analogues. Biochem Biophys Res Commun. 1973 Aug 21;53(4):1227–1233. doi: 10.1016/0006-291x(73)90596-2. [DOI] [PubMed] [Google Scholar]
  6. Giacomoni P. U., Le Talaer J. Y., Le Pecq J. B. Escherichia coli RNA-polymerase binding sites on DNA are only 14 base pairs long and are located between sequences that are very rich in AplusT. Proc Natl Acad Sci U S A. 1974 Aug;71(8):3091–3095. doi: 10.1073/pnas.71.8.3091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gonzalez N., Wiggs J., Chamberlin M. J. A simple procedure for resolution of Escherichia coli RNA polymerase holoenzyme from core polymerase. Arch Biochem Biophys. 1977 Aug;182(2):404–408. doi: 10.1016/0003-9861(77)90521-5. [DOI] [PubMed] [Google Scholar]
  8. Gross C., Hoffman J., Ward C., Hager D., Burdick G., Berger H., Burgess R. Mutation affecting thermostability of sigma subunit of Escherichia coli RNA polymerase lies near the dnaG locus at about 66 min on the E. coli genetic map. Proc Natl Acad Sci U S A. 1978 Jan;75(1):427–431. doi: 10.1073/pnas.75.1.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Havron A., Sperling J. Specificity of photochemical cross-linking in protein-nucleic acid complexes: identification of the interacting residues in RNase- pyrimidine nucleotide complex. Biochemistry. 1977 Dec 13;16(25):5631–5635. doi: 10.1021/bi00644a038. [DOI] [PubMed] [Google Scholar]
  10. Hillel Z., Wu C. W. Photochemical cross-linking studies on the interaction of Escherichia coli RNA polymerase with T7 DNA. Biochemistry. 1978 Jul 25;17(15):2954–2961. doi: 10.1021/bi00608a003. [DOI] [PubMed] [Google Scholar]
  11. Hinkle D. C., Ring J., Chamberlin M. J. Studies of the binding of Escherichia coli RNA polymerase to DNA. 3. Tight binding of RNA polymerase holoenzyme to single-strand breaks in T7 DNA. J Mol Biol. 1972 Sep 28;70(2):197–207. doi: 10.1016/0022-2836(72)90533-5. [DOI] [PubMed] [Google Scholar]
  12. Hirsh J., Schleif R. High resolution electron microscopic studies of genetic regulation. J Mol Biol. 1976 Dec;108(2):471–490. doi: 10.1016/s0022-2836(76)80131-3. [DOI] [PubMed] [Google Scholar]
  13. Hsieh T., Wang J. C. Physicochomecial studies on interactions between DNA and RNA polymerase. Isolation and mapping of a T7 DNA fragment containing the early promoters for Escherichia coli RNA polymerase. Biochemistry. 1976 Dec 28;15(26):5776–5783. doi: 10.1021/bi00671a014. [DOI] [PubMed] [Google Scholar]
  14. Hsieh T., Wang J. C. Physiochemical studies on interactions between DNA and RNA polymerase. Ultraviolet absorption measurements. Nucleic Acids Res. 1978 Sep;5(9):3337–3345. doi: 10.1093/nar/5.9.3337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jovin T. M., Englund P. T., Bertsch L. L. Enzymatic synthesis of deoxyribonucleic acid. XXVI. Physical and chemical studies of a homogeneous deoxyribonucleic acid polymerase. J Biol Chem. 1969 Jun 10;244(11):2996–3008. [PubMed] [Google Scholar]
  16. Kelly R. B., Cozzarelli N. R., Deutscher M. P., Lehman I. R., Kornberg A. Enzymatic synthesis of deoxyribonucleic acid. XXXII. Replication of duplex deoxyribonucleic acid by polymerase at a single strand break. J Biol Chem. 1970 Jan 10;245(1):39–45. [PubMed] [Google Scholar]
  17. Koller T., Sogo J. M., Bujard H. An electron microscopic method for studying nucleic acid-protein complexes. Visualization of RNA polymerase bound to the DNA of bacteriophages T7 and T3. Biopolymers. 1974 May;13(5):995–1009. doi: 10.1002/bip.1974.360130514. [DOI] [PubMed] [Google Scholar]
  18. Le Talaer J. Y., Kermici M., Jeanteur P. Isolation of Escherichia coli RNA polymerase binding sites on T5 and T7 DNA: further evidence for sigma-dependent recognition of A-T-rich DNA sequences. Proc Natl Acad Sci U S A. 1973 Oct;70(10):2911–2915. doi: 10.1073/pnas.70.10.2911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lin S. Y., Riggs A. D. Lac repressor binding to operator analogues: comparison of poly(d(A-T)), poly(d(A-BrU)), and poly(d(A-U)). Biochem Biophys Res Commun. 1971 Dec 17;45(6):1542–1547. doi: 10.1016/0006-291x(71)90195-1. [DOI] [PubMed] [Google Scholar]
  20. Lowe P. A., Malcolm A. D. Structural properties of Escherichia coli RNA polymerase Subunits. Eur J Biochem. 1976 Apr 15;64(1):177–188. doi: 10.1111/j.1432-1033.1976.tb10286.x. [DOI] [PubMed] [Google Scholar]
  21. McDonell M. W., Simon M. N., Studier F. W. Analysis of restriction fragments of T7 DNA and determination of molecular weights by electrophoresis in neutral and alkaline gels. J Mol Biol. 1977 Feb 15;110(1):119–146. doi: 10.1016/s0022-2836(77)80102-2. [DOI] [PubMed] [Google Scholar]
  22. Minkley E. G., Pribnow D. Transcription of the early region of bacteriophage T7: selective initiation with dinucleotides. J Mol Biol. 1973 Jun 25;77(2):255–277. doi: 10.1016/0022-2836(73)90335-5. [DOI] [PubMed] [Google Scholar]
  23. Nixon J., Spoor T., Evans J., Kimball A. Affinity labeling of Escherichia coli B deoxyribonucleic acid dependent ribonucleic acid polymerase. Biochemistry. 1972 Nov 21;11(24):4570–4573. doi: 10.1021/bi00774a023. [DOI] [PubMed] [Google Scholar]
  24. RICHARDSON C. C., KORNBERG A. A DEOXYRIBONUCLEIC ACID PHOSPHATASE-EXONUCLEASE FROM ESCHERICHIA COLI. I. PURIFICATION OF THE ENZYME AND CHARACTERIZATION OF THE PHOSPHATASE ACTIVITY. J Biol Chem. 1964 Jan;239:242–250. [PubMed] [Google Scholar]
  25. Sarocchi M. T., Darlix J. L. A spectroscopic approach to DNA transcription and protein binding. Eur J Biochem. 1974 Aug 1;46(3):481–489. doi: 10.1111/j.1432-1033.1974.tb03641.x. [DOI] [PubMed] [Google Scholar]
  26. Shapiro A. L., Viñuela E., Maizel J. V., Jr Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels. Biochem Biophys Res Commun. 1967 Sep 7;28(5):815–820. doi: 10.1016/0006-291x(67)90391-9. [DOI] [PubMed] [Google Scholar]
  27. Simpson R. B. The molecular topography of RNA polymerase-promoter interaction. Cell. 1979 Oct;18(2):277–285. doi: 10.1016/0092-8674(79)90047-3. [DOI] [PubMed] [Google Scholar]
  28. Stahl S. J., Chamberlin M. J. An expanded transcriptional map of T7 bacteriophage. Reading of minor T7 promoter sites in vitro by Escherichia coli RNA polymerase. J Mol Biol. 1977 Jun 5;112(4):577–601. doi: 10.1016/s0022-2836(77)80165-4. [DOI] [PubMed] [Google Scholar]
  29. Strausbauch P., Sulica A., Givol D. General method for the detection of cells producing antibodies against haptens and proteins. Nature. 1970 Jul 4;227(5253):68–69. doi: 10.1038/227068a0. [DOI] [PubMed] [Google Scholar]
  30. Szalay A. A., Grohmann K., Sinsheimer R. L. Separation of the complementary strands of DNA fragments on polyacrylamide gels. Nucleic Acids Res. 1977;4(5):1569–1578. doi: 10.1093/nar/4.5.1569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Travers A. A., Buckland R., Goman M., Le Grice S. S., Scaife J. G. A mutation affecting the sigma subunit of RNA polymerase changes transcriptional specificity. Nature. 1978 Jun 1;273(5661):354–358. doi: 10.1038/273354a0. [DOI] [PubMed] [Google Scholar]
  32. Vogt V. Breaks in DNA stimulate transcription by core RNA polymerase. Nature. 1969 Aug 23;223(5208):854–855. doi: 10.1038/223854a0. [DOI] [PubMed] [Google Scholar]
  33. Williams R. C., Chamberlin M. J. Electron microscope studies of transient complexes formed between Escherichia coli RNA polymerase holoenzyme and T7 DNA. Proc Natl Acad Sci U S A. 1977 Sep;74(9):3740–3744. doi: 10.1073/pnas.74.9.3740. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Yue V. T., Schimmel P. R. Direct and specific photochemical cross-linking of adenosine 5'-triphosphate to an aminoacyl-tRNA synthetase. Biochemistry. 1977 Oct 18;16(21):4678–4684. doi: 10.1021/bi00640a023. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES