Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 12;67(Pt 11):i61. doi: 10.1107/S1600536811041328

Penta­terbium lithium tris­tannide, Tb5LiSn3

Andrij Stetskiv a, Ivan Tarasiuk b,*, Renata Misztal c, Volodymyr Pavlyuk b,
PMCID: PMC3246906  PMID: 22219726

Abstract

The new ternary phase penta­terbium lithium tris­tannide, Tb5LiSn3, crystallizes in the hexa­gonal Hf5CuSn3 structure type, which is a ‘filled’ version of the binary RE 5Sn3 phases (Mn5Si3-type) (RE is rare earth). The asymmetric unit contains two Tb sites (site symmetries 3.2 and m2m), one Li site (site symmetry Inline graphic.m) and one Sn site (site symmetry m2m). The 14-vertex Frank–Kasper polyhedra are typical for Li and Tb atoms. The environment of the Sn atom is a pseudo-Frank–Kasper polyhedron with a coordination number of 13 for the tin atom. One of the Tb atoms is enclosed in a 17-vertex polyhedron. The metallic type of bonding was indicated by an analysis of the inter­atomic distances.

Related literature

For the Hf5CuSn3 structure type, see: Rieger & Parthé (1965). For related structures, see: Pavlyuk & Bodak (1992a ,b ); Pavlyuk et al. (1989, 1991, 1993). For the magnetic properties of related compounds, see: Tran et al. (2008).

Experimental

Crystal data

  • Tb5LiSn3

  • M r = 1157.72

  • Hexagonal, Inline graphic

  • a = 9.0122 (14) Å

  • c = 6.5744 (13) Å

  • V = 462.4 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 45.56 mm−1

  • T = 293 K

  • 0.07 × 0.05 × 0.03 mm

Data collection

  • Oxford Diffraction Xcalibur3 CCD diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008) T min = 0.322, T max = 0.657

  • 1907 measured reflections

  • 216 independent reflections

  • 207 reflections with I > 2σ(I)

  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.021

  • wR(F 2) = 0.066

  • S = 1.33

  • 216 reflections

  • 14 parameters

  • Δρmax = 1.08 e Å−3

  • Δρmin = −1.47 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811041328/ff2031sup1.cif

e-67-00i61-sup1.cif (19KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811041328/ff2031Isup2.hkl

e-67-00i61-Isup2.hkl (11.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support from the Ministry of Education and Science, Youth and Sport of Ukraine (N 0111U001089) is gratefully acknowledged.

supplementary crystallographic information

Comment

The RE5TM3 (RE - rare earth, T - Cu, Ag and M - Sn, Pb) ternary stannides crystallize in a hexagonal Hf5CuSn3 (superstructure to Ti5Ga4-type) with space group P63/mcm (Rieger and Parthé, 1965). These intermetallic compounds are characterized by two different sites for the RE atoms located at 4 d and 6 g, respectively. The Sn or Pb atoms are located at the next 6 g site and the transitions atoms occupy 2 b site.The RE5TM3 intermetallics are 'filled' version of the binary RE5M3 phases which crystallize in Mn5Si3 structure type. It is also possible, that the transition metals fill the octahedral voids.

For the Ce based compounds, Ce5TM3, investigated by (Tran et al., 2008) are found multiple magnetic phase transitions at low temperatures and discussed the role of f-spd hybridization on the evolution of heavy-fermion behaviour.

We detected the new ternary compound during the systematic study of ternary alloys of Tb—Li—Sn system from the concentration region with low content of lithium. The powder diffraction pattern of this compound is similar to the powder pattern of the RE5Sn3 (RE - rare-earth metals) binary phases, but has some differences. So we decided to further study this phase using single-crystal method. Obtained single-crystal data show that the title compound crystallizes with the hexagonal space group P63/mcm as a Hf5CuSn3 type. The projection of the unit cell and coordination polyhedra of the atoms are shown in Fig. 1. The distribution of tin and lithium atoms in three-dimensional-nets consisted of Tb atoms are shown in Fig. 2.

The number of neighbouring atoms correlates well with the dimensions of the central atoms. The Tb atoms are enclosed in 14- and 17-vertex polyhedra. The coordination polyhedron of the Sn atom is pseudo Frank-Kasper polyhedron with CN=13. Lithium atom is surrounded by 14 neighbours atoms in the form of 14-vertex Frank-Kasper polyhedron. The shortest interatomic distances in the title compound are in the typical for intermetallic compounds ranges and indicate metallic type of bonding.

In the title compound lithium atoms occupy the same crystallographic position that the atoms of transition metal in the original structure type. The same was observed previously when we studied RELiSn2 compounds with the CeNiSi2 structure type (Pavlyuk et al., 1989), RELiGe with the ZrNiAl type (Pavlyuk et al., 1991 and Pavlyuk & Bodak, 1992a), RE3Li2Ge3 with Hf3Ni2Si3 type (Pavlyuk & Bodak, 1992b), solid solutions RLixCu2 -xSi2 and RLixCu2 -xGe2 (Pavlyuk et al., 1993).

Experimental

Terbium, lithium and tin, all with a nominal purity more than 99.9 wt. %, were used as starting elements. First, the pieces of the pure metals with a stoichiometry Tb55Li10Sn35 were pressed into pellet, enclosed in tantalum crucible and placed in a resistance furnace with a thermocouple controller. Heating rate from room temperature to 670 K was equal 5 K per minute. At this temperature the alloy was held over 2 d and then the temperature was increased from 670 to 1070 K over 1 h. Then the alloy was annealed at this temperature for 8 h and slowly cooled down to room temperature. After the melting and annealing procedures, the total weight loss was less than 2%. Small good quality single-crystal of the title compound was isolated from alloy.

Figures

Fig. 1.

Fig. 1.

The projection of the unit cell and coordination polyhedra of the atoms.

Fig. 2.

Fig. 2.

The distribution of tin and lithium atoms in three-dimensional-nets consisted of Tb atoms.

Crystal data

Tb5LiSn3 Dx = 8.315 Mg m3
Mr = 1157.72 Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63/mcm Cell parameters from 1907 reflections
Hall symbol: -P 6c 2 θ = 2.6–27.4°
a = 9.0122 (14) Å µ = 45.56 mm1
c = 6.5744 (13) Å T = 293 K
V = 462.4 (2) Å3 Prism, metallic dark grey
Z = 2 0.07 × 0.05 × 0.03 mm
F(000) = 956

Data collection

Oxford Diffraction Xcalibur3 CCD diffractometer 216 independent reflections
Radiation source: fine-focus sealed tube 207 reflections with I > 2σ(I)
graphite Rint = 0.021
Detector resolution: 0 pixels mm-1 θmax = 27.4°, θmin = 2.6°
ω scans h = −11→11
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008) k = −11→11
Tmin = 0.322, Tmax = 0.657 l = 0→8
1907 measured reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Primary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.021 Secondary atom site location: difference Fourier map
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0268P)2 + 3.977P] where P = (Fo2 + 2Fc2)/3
S = 1.33 (Δ/σ)max < 0.001
216 reflections Δρmax = 1.08 e Å3
14 parameters Δρmin = −1.47 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Tb1 0.25088 (10) 0.0000 0.2500 0.0479 (3)
Tb2 0.3333 0.6667 0.0000 0.0535 (3)
Sn3 0.60694 (14) 0.0000 0.2500 0.0493 (4)
Li4 0.0000 0.0000 0.0000 0.055 (13)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Tb1 0.0478 (4) 0.0481 (5) 0.0479 (5) 0.0241 (3) 0.000 0.000
Tb2 0.0536 (4) 0.0536 (4) 0.0532 (6) 0.0268 (2) 0.000 0.000
Sn3 0.0491 (5) 0.0493 (7) 0.0496 (6) 0.0247 (4) 0.000 0.000
Li4 0.07 (2) 0.07 (2) 0.03 (2) 0.033 (11) 0.000 0.000

Geometric parameters (Å, °)

Tb1—Li4 2.7952 (8) Tb2—Tb1xii 3.8093 (7)
Tb1—Li4i 2.7952 (8) Tb2—Tb1xi 3.8093 (7)
Tb1—Sn3ii 3.1066 (11) Tb2—Tb1xiii 3.8093 (8)
Tb1—Sn3iii 3.1066 (11) Tb2—Tb1ix 3.8093 (7)
Tb1—Sn3 3.2090 (16) Sn3—Tb1xvii 3.1066 (11)
Tb1—Sn3iv 3.5281 (8) Sn3—Tb1xviii 3.1066 (11)
Tb1—Sn3v 3.5281 (8) Sn3—Tb2vii 3.2247 (6)
Tb1—Tb2vi 3.8093 (7) Sn3—Tb2vi 3.2247 (6)
Tb1—Tb2vii 3.8093 (7) Sn3—Tb2ix 3.2247 (6)
Tb1—Tb2viii 3.8093 (7) Sn3—Tb2viii 3.2247 (6)
Tb1—Tb2ix 3.8093 (7) Sn3—Tb1iv 3.5281 (8)
Tb1—Tb1x 3.9161 (17) Sn3—Tb1v 3.5281 (8)
Tb2—Sn3xi 3.2247 (6) Li4—Tb1xix 2.7952 (8)
Tb2—Sn3xii 3.2247 (6) Li4—Tb1xx 2.7952 (8)
Tb2—Sn3xiii 3.2247 (6) Li4—Tb1xiii 2.7952 (8)
Tb2—Sn3ix 3.2247 (6) Li4—Tb1x 2.7952 (8)
Tb2—Sn3xiv 3.2247 (6) Li4—Tb1xiv 2.7952 (8)
Tb2—Sn3iii 3.2247 (6) Li4—Li4i 3.2872 (6)
Tb2—Tb2xv 3.2872 (6) Li4—Li4xxi 3.2872 (6)
Tb2—Tb2xvi 3.2872 (6)
Li4—Tb1—Li4i 72.03 (3) Sn3xiv—Tb2—Tb1xii 144.94 (2)
Li4—Tb1—Sn3ii 82.67 (2) Sn3iii—Tb2—Tb1xii 123.785 (13)
Li4i—Tb1—Sn3ii 82.67 (2) Tb2xv—Tb2—Tb1xii 64.439 (7)
Li4—Tb1—Sn3iii 82.67 (2) Tb2xvi—Tb2—Tb1xii 115.561 (7)
Li4i—Tb1—Sn3iii 82.67 (2) Sn3xi—Tb2—Tb1xi 53.50 (2)
Sn3ii—Tb1—Sn3iii 161.86 (5) Sn3xii—Tb2—Tb1xi 110.39 (2)
Li4—Tb1—Sn3 143.985 (13) Sn3xiii—Tb2—Tb1xi 59.520 (16)
Li4i—Tb1—Sn3 143.985 (13) Sn3ix—Tb2—Tb1xi 51.60 (2)
Sn3ii—Tb1—Sn3 99.07 (2) Sn3xiv—Tb2—Tb1xi 123.785 (13)
Sn3iii—Tb1—Sn3 99.07 (2) Sn3iii—Tb2—Tb1xi 144.94 (2)
Li4—Tb1—Sn3iv 147.31 (3) Tb2xv—Tb2—Tb1xi 115.561 (7)
Li4i—Tb1—Sn3iv 75.28 (2) Tb2xvi—Tb2—Tb1xi 64.439 (7)
Sn3ii—Tb1—Sn3iv 93.283 (5) Tb1xii—Tb2—Tb1xi 63.16 (2)
Sn3iii—Tb1—Sn3iv 93.283 (5) Sn3xi—Tb2—Tb1xiii 59.520 (16)
Sn3—Tb1—Sn3iv 68.70 (3) Sn3xii—Tb2—Tb1xiii 123.785 (13)
Li4—Tb1—Sn3v 75.28 (2) Sn3xiii—Tb2—Tb1xiii 53.50 (2)
Li4i—Tb1—Sn3v 147.31 (3) Sn3ix—Tb2—Tb1xiii 144.94 (2)
Sn3ii—Tb1—Sn3v 93.283 (5) Sn3xiv—Tb2—Tb1xiii 110.39 (2)
Sn3iii—Tb1—Sn3v 93.283 (5) Sn3iii—Tb2—Tb1xiii 51.60 (2)
Sn3—Tb1—Sn3v 68.70 (3) Tb2xv—Tb2—Tb1xiii 64.439 (7)
Sn3iv—Tb1—Sn3v 137.41 (5) Tb2xvi—Tb2—Tb1xiii 115.561 (7)
Li4—Tb1—Tb2vi 102.887 (9) Tb1xii—Tb2—Tb1xiii 102.753 (8)
Li4i—Tb1—Tb2vi 136.924 (8) Tb1xi—Tb2—Tb1xiii 93.848 (16)
Sn3ii—Tb1—Tb2vi 54.444 (14) Sn3xi—Tb2—Tb1ix 123.785 (13)
Sn3iii—Tb1—Tb2vi 140.12 (2) Sn3xii—Tb2—Tb1ix 59.520 (16)
Sn3—Tb1—Tb2vi 53.886 (12) Sn3xiii—Tb2—Tb1ix 144.94 (2)
Sn3iv—Tb1—Tb2vi 100.83 (2) Sn3ix—Tb2—Tb1ix 53.50 (2)
Sn3v—Tb1—Tb2vi 51.970 (13) Sn3xiv—Tb2—Tb1ix 51.60 (2)
Li4—Tb1—Tb2vii 136.924 (8) Sn3iii—Tb2—Tb1ix 110.39 (2)
Li4i—Tb1—Tb2vii 102.887 (9) Tb2xv—Tb2—Tb1ix 115.561 (7)
Sn3ii—Tb1—Tb2vii 140.12 (2) Tb2xvi—Tb2—Tb1ix 64.439 (7)
Sn3iii—Tb1—Tb2vii 54.444 (14) Tb1xii—Tb2—Tb1ix 93.848 (16)
Sn3—Tb1—Tb2vii 53.886 (12) Tb1xi—Tb2—Tb1ix 102.753 (8)
Sn3iv—Tb1—Tb2vii 51.970 (13) Tb1xiii—Tb2—Tb1ix 160.55 (2)
Sn3v—Tb1—Tb2vii 100.83 (2) Tb1xvii—Sn3—Tb1xviii 78.14 (5)
Tb2vi—Tb1—Tb2vii 107.77 (2) Tb1xvii—Sn3—Tb1 140.93 (2)
Li4—Tb1—Tb2viii 136.924 (8) Tb1xviii—Sn3—Tb1 140.93 (2)
Li4i—Tb1—Tb2viii 102.887 (9) Tb1xvii—Sn3—Tb2vii 73.951 (16)
Sn3ii—Tb1—Tb2viii 54.444 (14) Tb1xviii—Sn3—Tb2vii 137.78 (3)
Sn3iii—Tb1—Tb2viii 140.12 (2) Tb1—Sn3—Tb2vii 72.61 (2)
Sn3—Tb1—Tb2viii 53.886 (12) Tb1xvii—Sn3—Tb2vi 137.78 (3)
Sn3iv—Tb1—Tb2viii 51.970 (13) Tb1xviii—Sn3—Tb2vi 73.951 (16)
Sn3v—Tb1—Tb2viii 100.83 (2) Tb1—Sn3—Tb2vi 72.61 (2)
Tb2vi—Tb1—Tb2viii 51.122 (14) Tb2vii—Sn3—Tb2vi 145.22 (4)
Tb2vii—Tb1—Tb2viii 86.152 (16) Tb1xvii—Sn3—Tb2ix 73.951 (16)
Li4—Tb1—Tb2ix 102.887 (9) Tb1xviii—Sn3—Tb2ix 137.78 (3)
Li4i—Tb1—Tb2ix 136.924 (8) Tb1—Sn3—Tb2ix 72.61 (2)
Sn3ii—Tb1—Tb2ix 140.12 (2) Tb2vii—Sn3—Tb2ix 61.287 (15)
Sn3iii—Tb1—Tb2ix 54.444 (14) Tb2vi—Sn3—Tb2ix 107.56 (2)
Sn3—Tb1—Tb2ix 53.886 (12) Tb1xvii—Sn3—Tb2viii 137.78 (3)
Sn3iv—Tb1—Tb2ix 100.83 (2) Tb1xviii—Sn3—Tb2viii 73.951 (16)
Sn3v—Tb1—Tb2ix 51.970 (13) Tb1—Sn3—Tb2viii 72.61 (2)
Tb2vi—Tb1—Tb2ix 86.152 (16) Tb2vii—Sn3—Tb2viii 107.56 (2)
Tb2vii—Tb1—Tb2ix 51.122 (14) Tb2vi—Sn3—Tb2viii 61.287 (15)
Tb2viii—Tb1—Tb2ix 107.77 (2) Tb2ix—Sn3—Tb2viii 145.22 (4)
Li4—Tb1—Tb1x 45.533 (9) Tb1xvii—Sn3—Tb1iv 73.62 (2)
Li4i—Tb1—Tb1x 45.533 (9) Tb1xviii—Sn3—Tb1iv 73.62 (2)
Sn3ii—Tb1—Tb1x 50.93 (2) Tb1—Sn3—Tb1iv 111.30 (3)
Sn3iii—Tb1—Tb1x 110.93 (2) Tb2vii—Sn3—Tb1iv 68.510 (11)
Sn3—Tb1—Tb1x 150.0 Tb2vi—Sn3—Tb1iv 125.693 (6)
Sn3iv—Tb1—Tb1x 108.33 (2) Tb2ix—Sn3—Tb1iv 125.693 (6)
Sn3v—Tb1—Tb1x 108.33 (2) Tb2viii—Sn3—Tb1iv 68.510 (11)
Tb2vi—Tb1—Tb1x 99.726 (11) Tb1xvii—Sn3—Tb1v 73.62 (2)
Tb2vii—Tb1—Tb1x 148.420 (11) Tb1xviii—Sn3—Tb1v 73.62 (2)
Tb2viii—Tb1—Tb1x 99.726 (11) Tb1—Sn3—Tb1v 111.30 (3)
Tb2ix—Tb1—Tb1x 148.420 (11) Tb2vii—Sn3—Tb1v 125.693 (6)
Sn3xi—Tb2—Sn3xii 163.38 (4) Tb2vi—Sn3—Tb1v 68.510 (11)
Sn3xi—Tb2—Sn3xiii 72.44 (2) Tb2ix—Sn3—Tb1v 68.510 (11)
Sn3xii—Tb2—Sn3xiii 96.334 (10) Tb2viii—Sn3—Tb1v 125.693 (6)
Sn3xi—Tb2—Sn3ix 96.334 (10) Tb1iv—Sn3—Tb1v 137.41 (5)
Sn3xii—Tb2—Sn3ix 72.44 (2) Tb1xix—Li4—Tb1xx 88.933 (19)
Sn3xiii—Tb2—Sn3ix 97.06 (4) Tb1xix—Li4—Tb1 91.067 (19)
Sn3xi—Tb2—Sn3xiv 96.334 (10) Tb1xx—Li4—Tb1 180.0
Sn3xii—Tb2—Sn3xiv 97.06 (4) Tb1xix—Li4—Tb1xiii 180.0
Sn3xiii—Tb2—Sn3xiv 163.38 (4) Tb1xx—Li4—Tb1xiii 91.067 (19)
Sn3ix—Tb2—Sn3xiv 96.334 (10) Tb1—Li4—Tb1xiii 88.933 (19)
Sn3xi—Tb2—Sn3iii 97.06 (4) Tb1xix—Li4—Tb1x 91.067 (19)
Sn3xii—Tb2—Sn3iii 96.334 (10) Tb1xx—Li4—Tb1x 91.067 (19)
Sn3xiii—Tb2—Sn3iii 96.334 (10) Tb1—Li4—Tb1x 88.933 (19)
Sn3ix—Tb2—Sn3iii 163.38 (4) Tb1xiii—Li4—Tb1x 88.933 (19)
Sn3xiv—Tb2—Sn3iii 72.44 (2) Tb1xix—Li4—Tb1xiv 88.933 (19)
Sn3xi—Tb2—Tb2xv 120.643 (7) Tb1xx—Li4—Tb1xiv 88.933 (19)
Sn3xii—Tb2—Tb2xv 59.357 (8) Tb1—Li4—Tb1xiv 91.067 (19)
Sn3xiii—Tb2—Tb2xv 59.357 (7) Tb1xiii—Li4—Tb1xiv 91.067 (19)
Sn3ix—Tb2—Tb2xv 120.643 (8) Tb1x—Li4—Tb1xiv 180.00 (7)
Sn3xiv—Tb2—Tb2xv 120.643 (7) Tb1xix—Li4—Li4i 126.015 (13)
Sn3iii—Tb2—Tb2xv 59.357 (7) Tb1xx—Li4—Li4i 126.015 (13)
Sn3xi—Tb2—Tb2xvi 59.357 (7) Tb1—Li4—Li4i 53.985 (13)
Sn3xii—Tb2—Tb2xvi 120.643 (7) Tb1xiii—Li4—Li4i 53.985 (13)
Sn3xiii—Tb2—Tb2xvi 120.643 (8) Tb1x—Li4—Li4i 53.985 (13)
Sn3ix—Tb2—Tb2xvi 59.357 (8) Tb1xiv—Li4—Li4i 126.015 (13)
Sn3xiv—Tb2—Tb2xvi 59.357 (7) Tb1xix—Li4—Li4xxi 53.985 (13)
Sn3iii—Tb2—Tb2xvi 120.643 (7) Tb1xx—Li4—Li4xxi 53.985 (13)
Tb2xv—Tb2—Tb2xvi 180.0 Tb1—Li4—Li4xxi 126.015 (13)
Sn3xi—Tb2—Tb1xii 110.39 (2) Tb1xiii—Li4—Li4xxi 126.015 (13)
Sn3xii—Tb2—Tb1xii 53.50 (2) Tb1x—Li4—Li4xxi 126.015 (13)
Sn3xiii—Tb2—Tb1xii 51.60 (2) Tb1xiv—Li4—Li4xxi 53.985 (13)
Sn3ix—Tb2—Tb1xii 59.520 (16) Li4i—Li4—Li4xxi 180.0

Symmetry codes: (i) −x, −y, z+1/2; (ii) −y, xy−1, z; (iii) −x+y+1, −x+1, z; (iv) −x+1, −y, −z+1; (v) −x+1, −y, −z; (vi) x, y−1, z; (vii) −x+1, −y+1, z+1/2; (viii) x, y−1, −z+1/2; (ix) −x+1, −y+1, −z; (x) −x+y, −x, z; (xi) y, −x+y+1, −z; (xii) x, y+1, z; (xiii) −y, xy, z; (xiv) xy, x, −z; (xv) x, y, −z+1/2; (xvi) x, y, −z−1/2; (xvii) −y+1, xy, z; (xviii) −x+y+1, −x, z; (xix) y, −x+y, −z; (xx) −x, −y, −z; (xxi) −x, −y, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FF2031).

References

  1. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  3. Pavlyuk, V. & Bodak, O. (1992a). Akad. Nauk SSSR Izv. Met. 6, 207–210.
  4. Pavlyuk, V. & Bodak, O. (1992b). Inorg. Mater. 28, 877–879.
  5. Pavlyuk, V., Bodak, O. & Bruskov, V. (1991). Dop. Akad. Nauk Ukraine, 1, 112–114.
  6. Pavlyuk, V., Bodak, O. & Kevorkov, D. (1993). Dop. Akad. Nauk Ukraine, 9, 84–87.
  7. Pavlyuk, V., Bodak, O., Pecharskii, V., Skolozdra, R. & Gladyshevskii, E. (1989). Inorg. Mater. 25, 962–965.
  8. Rieger, W. & Parthé, E. (1965). Monatsh. Chem. 96, 232–241.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Tran, V. H., Gamza, M., Slebarski, A. & Miiller, W. (2008). J. Alloys Compd, 451, 457–460.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811041328/ff2031sup1.cif

e-67-00i61-sup1.cif (19KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811041328/ff2031Isup2.hkl

e-67-00i61-Isup2.hkl (11.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES