Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 22;67(Pt 11):i62. doi: 10.1107/S1600536811042127

Cu4.35Cd1.65As16: the first polyarsenic compound in the Cu–Cd–As system

Oliver Osters a, Tom Nilges a,*
PMCID: PMC3246907  PMID: 22219727

Abstract

The first polyarsenic compound in the Cu–Cd–As system was obtained by solid-state reaction of the elements and has a refined composition of Cu4.35 (2)Cd1.65 (2)As16 (tetra­copper dicadmium hexa­deca­arsenide). It adopts the Cu5InP16 structure type. The asymmetric unit consists of one Cu site, a split Cu/Cd site and four As sites. The polyanionic structure can be described as being composed of As6 rings in chair conformations which are connected in the 1-, 2-, 4- and 5-positions. The resulting layers evolve along the c axis perpendicular to the ab plane. One Cu atom exhibits site symmetry 2 and is tetra­hedrally coordinated by four As atoms. The other Cu atom, representing the split site, and the corresponding Cd atom have different coordination spheres. While the Cu atom is tetra­hedrally coordinated by four As atoms, the Cd atom has a [3 + 1] coordination with a considerably longer Cd—As distance.

Related literature

For Cu5InP16, see: Lange et al. (2008). For related polyphosphides, see: Pöttgen et al. (2006). For polyarsenides, see: Bauhofer et al. (1981); Jeitschko et al. (2000); Emmerling & Röhr (2002); Emmerling et al. (2004); Hönle et al. (2002). For binary Cu–Cd phases, see: Brandon et al. (1974); Kreiner & Schaepers (1997); von Heidenstamm et al. (1968). For related structures, see: Mansmann (1965); Clark & Range (1976). For crystallographic background, see: Becker & Coppens (1974).

Experimental

Crystal data

  • Cu4.35Cd1.65As16

  • M r = 1660.8

  • Monoclinic, Inline graphic

  • a = 11.8324 (6) Å

  • b = 10.4423 (4) Å

  • c = 8.0903 (4) Å

  • β = 110.480 (4)°

  • V = 936.44 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 34.73 mm−1

  • T = 293 K

  • 0.030 × 0.020 × 0.004 mm

Data collection

  • Stoe IPDS 2T diffractometer

  • Absorption correction: numerical (X-AREA; Stoe & Cie, 2011) T min = 0.205, T max = 0.785

  • 12811 measured reflections

  • 1268 independent reflections

  • 1113 reflections with I > 3σ(I)

  • R int = 0.053

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.072

  • S = 1.83

  • 1268 reflections

  • 56 parameters

  • Δρmax = 1.50 e Å−3

  • Δρmin = −1.67 e Å−3

Data collection: X-AREA (Stoe & Cie, 2011); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: Superflip (Palatinus & Chapuis, 2007) embedded in JANA2006 (Petřiček et al., 2006); program(s) used to refine structure: JANA2006; molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811042127/wm2539sup1.cif

e-67-00i62-sup1.cif (12.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811042127/wm2539Isup2.hkl

e-67-00i62-Isup2.hkl (54.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Cu1—As1 2.4254 (9)
Cu1—As3 2.3931 (9)
Cu2—As2 2.516 (5)
Cu2—As3 2.501 (5)
Cu2—As4i 2.589 (6)
Cu2—As4ii 2.524 (7)
Cd2—As2 2.856 (5)
Cd2—As3 2.516 (5)
Cd2—As4i 2.475 (5)
Cd2—As4ii 2.569 (6)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the German Science Foundation (DFG) for the kind support of this project within the SPP 1415.

supplementary crystallographic information

Comment

Besides the plethora of known polyphosphides (Pöttgen et al., 2006) only few polyarsenides are known up to date (Bauhofer et al., 1981; Jeitschko et al., 2000; Emmerling & Röhr, 2002; Emmerling et al., 2004; Hönle et al., 2002).

The title compound Cu4.35 (2)Cd1.65 (2)As16 is the first representative of a polyarsenide adopting the Cu5InP16 structure type (Lange et al., 2008). In accordance to the situation in Cu5InP16 where Cu and In are occupying the same site, a similar behavior is observed for the title compound, but here with a Cu/Cd split position. Mixing of Cu and Cd on one site is a common feature in intermetallic compounds and has been observed for instance for Cd3Cu4 (Kreiner & Schaepers, 1997) and Cd8Cu5 (von Heidenstamm et al., 1968; Brandon et al., 1974).

Cu—As distances in Cu4.35 (2)Cd1.65 (2)As16 range from 2.3931 (9) Å to 2.589 (6) Å and are comparable with the distances of 2.404 (1) Å to 2.590 (1) Å in Cu3As (Mansmann, 1965). The As—As distances in Cu4.35 (2)Cd1.65 (2)As16 are between 2.4242 (8) Å and 2.4644 (10) Å, in good accordance with the As—As distances in NdFe4As12 (2.428 Å - 2.499 Å) (Jeitschko et al., 2000). Cd—As distances are present between 2.475 (5) Å and 2.856 (5) Å which is consistent with values found for CdAs (2.473 (2) Å - 2.868 (2) Å) (Clark & Range, 1976).

Experimental

Cu4.35 (2)Cd1.65 (2)As16 was prepared by a solid state reaction from the elements Cu (ChemPur, shot, 99.999%), Cd (ChemPur, granules, 99.9999%) and As (ChemPur, pieces, 99.9999%). Arsenic was purified by sublimation in evacuated silica ampoules using a temperature gradient of 573 K to room temperature to separate As2O3 from the bulk-As and at 873 K to 573 K to sublimate As directly. The purified As was stored under protection gas atmosphere prior to use. The starting materials were reacted in stoichiometric amounts according the reported composition at 753 K for 7 days followed by a homogenization step by grinding. The procedure was repeated two times to finalize the formation of the title compound. Single crystals of suitable size could be separated from the bulk phase.

Refinement

The highest peak is 0.99 Å away from As3 and the deepest hole is 0.81 Å away from As4. We have tested two different structure models to describe the Cu/Cd distribution in the title compound. In the first model, Cu and Cd were refined on one common position restricting the coordinates and displacement parameters while keeping an overall full occupancy. In the second model, the coordinates were not restricted, leading to a split position for Cu and Cd. Comparable to the first model the sum of occupancy factors of both split position were set to one. After an evaluation of the refinement results for both models we decided the second model for structure description due to better and more reliable displacement and statistical parameters.

Figures

Fig. 1.

Fig. 1.

Crystal structure of Cu4.35 (2)Cd1.65 (2)As16, viewed along the c axis. Displacement ellipsoids are shown at the 90% probability level.

Crystal data

Cu4.35Cd1.65As16 F(000) = 1467
Mr = 1660.8 Dx = 5.888 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 12419 reflections
a = 11.8324 (6) Å θ = 3.7–29.7°
b = 10.4423 (4) Å µ = 34.73 mm1
c = 8.0903 (4) Å T = 293 K
β = 110.480 (4)° Plate, black
V = 936.44 (8) Å3 0.03 × 0.02 × 0.004 mm
Z = 2

Data collection

Stoe IPDS 2T diffractometer 1268 independent reflections
Radiation source: X-ray tube 1113 reflections with I > 3σ(I)
plane graphite Rint = 0.053
Detector resolution: 6.67 pixels mm-1 θmax = 29.3°, θmin = 3.7°
ω scans h = −16→16
Absorption correction: numerical (X-AREA; Stoe & Cie, 2011) k = −14→14
Tmin = 0.205, Tmax = 0.785 l = −11→11
12811 measured reflections

Refinement

Refinement on F2 6 constraints
R[F2 > 2σ(F2)] = 0.036 Weighting scheme based on measured s.u.'s w = 1/[σ2(I) + 0.0004I2]
wR(F2) = 0.072 (Δ/σ)max = 0.007
S = 1.83 Δρmax = 1.50 e Å3
1268 reflections Δρmin = −1.67 e Å3
56 parameters Extinction correction: B-C type 1 Gaussian isotropic (Becker & Coppens, 1974)
0 restraints Extinction coefficient: 0.021 (2)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cu1 0 0.41450 (10) 0.25 0.0156 (3)
Cu2 −0.0942 (5) 0.1309 (5) −0.0886 (9) 0.0198 (9) 0.587 (6)
Cd2 −0.0713 (4) 0.1064 (5) −0.0867 (7) 0.0198 (9) 0.413 (6)
As1 −0.15337 (5) 0.56586 (5) 0.08461 (8) 0.01309 (19)
As2 −0.23875 (5) 0.30964 (6) −0.22826 (8) 0.01406 (19)
As3 0.07426 (6) 0.27955 (6) 0.07165 (9) 0.0171 (2)
As4 −0.33882 (6) 0.48506 (7) −0.13511 (9) 0.0232 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0132 (5) 0.0182 (5) 0.0157 (5) 0 0.0055 (4) 0
Cu2 0.0171 (16) 0.0237 (16) 0.0194 (4) −0.0067 (9) 0.0076 (10) −0.0062 (10)
Cd2 0.0171 (16) 0.0237 (16) 0.0194 (4) −0.0067 (9) 0.0076 (10) −0.0062 (10)
As1 0.0115 (3) 0.0139 (3) 0.0130 (3) −0.0003 (2) 0.0033 (2) 0.0001 (2)
As2 0.0126 (3) 0.0143 (3) 0.0143 (3) 0.0015 (2) 0.0034 (2) 0.0016 (2)
As3 0.0153 (3) 0.0172 (3) 0.0198 (3) 0.0025 (2) 0.0074 (2) 0.0046 (2)
As4 0.0128 (3) 0.0296 (3) 0.0265 (4) −0.0031 (3) 0.0061 (3) −0.0155 (3)

Geometric parameters (Å, °)

Cu1—As1 2.4254 (9) Cd2—As2 2.856 (5)
Cu1—As1i 2.4254 (9) Cd2—As3 2.516 (5)
Cu1—As3 2.3931 (9) Cd2—As4ii 2.475 (5)
Cu1—As3i 2.3931 (9) Cd2—As4iii 2.569 (6)
Cu2—Cd2 0.370 (8) As1—As2v 2.4644 (10)
Cu2—As2 2.516 (5) As1—As3vi 2.4307 (10)
Cu2—As3 2.501 (5) As1—As4 2.4408 (8)
Cu2—As4ii 2.589 (6) As2—As3vii 2.4242 (8)
Cu2—As4iii 2.524 (7) As2—As4 2.4392 (10)
Cd2—Cd2iv 2.845 (7)
As1—Cu1—As1i 98.67 (4) As3vi—As1—As4 105.22 (3)
As1—Cu1—As3 114.38 (2) Cu2—As2—Cd2 3.1 (2)
As1—Cu1—As3i 110.77 (2) Cu2—As2—As1viii 107.87 (17)
As1i—Cu1—As3 110.77 (2) Cu2—As2—As3vii 109.44 (12)
As1i—Cu1—As3i 114.38 (2) Cu2—As2—As4 138.19 (17)
As3—Cu1—As3i 107.85 (4) Cd2—As2—As1viii 105.21 (13)
Cd2—Cu2—As2 155.1 (16) Cd2—As2—As3vii 108.99 (10)
Cd2—Cu2—As3 88.1 (11) Cd2—As2—As4 141.07 (12)
Cd2—Cu2—As4ii 68.2 (12) As1viii—As2—As3vii 105.49 (3)
Cd2—Cu2—As4iii 92.7 (15) As1viii—As2—As4 98.12 (3)
As2—Cu2—As3 93.76 (19) As3vii—As2—As4 93.81 (3)
As2—Cu2—As4ii 95.40 (19) Cu1—As3—Cu2 106.49 (17)
As2—Cu2—As4iii 110.1 (3) Cu1—As3—Cd2 113.57 (14)
As3—Cu2—As4ii 139.5 (3) Cu1—As3—As1vi 102.24 (3)
As3—Cu2—As4iii 108.6 (2) Cu1—As3—As2ix 105.39 (3)
As4ii—Cu2—As4iii 105.0 (2) Cu2—As3—Cd2 8.44 (18)
Cu2—Cd2—Cd2iv 149.6 (16) Cu2—As3—As1vi 121.65 (17)
Cu2—Cd2—As2 21.8 (14) Cu2—As3—As2ix 118.91 (13)
Cu2—Cd2—As3 83.5 (11) Cd2—As3—As1vi 122.14 (14)
Cu2—Cd2—As4ii 103.9 (12) Cd2—As3—As2ix 111.47 (11)
Cu2—Cd2—As4iii 79.0 (15) As1vi—As3—As2ix 100.07 (3)
Cd2iv—Cd2—As2 170.7 (3) Cu2x—As4—Cu2iii 145.40 (19)
Cd2iv—Cd2—As3 97.37 (17) Cu2x—As4—Cd2x 7.97 (17)
Cd2iv—Cd2—As4ii 92.32 (19) Cu2x—As4—Cd2iii 138.18 (18)
Cd2iv—Cd2—As4iii 71.60 (19) Cu2x—As4—As1 110.54 (12)
As2—Cd2—As3 85.72 (15) Cu2x—As4—As2 102.12 (16)
As2—Cd2—As4ii 89.91 (14) Cu2iii—As4—Cd2x 138.99 (18)
As2—Cd2—As4iii 99.07 (19) Cu2iii—As4—Cd2iii 8.26 (17)
As3—Cd2—As4ii 146.1 (3) Cu2iii—As4—As1 94.09 (12)
As3—Cd2—As4iii 106.8 (2) Cu2iii—As4—As2 99.75 (14)
As4ii—Cd2—As4iii 107.07 (19) Cd2x—As4—Cd2iii 132.39 (17)
Cu1—As1—As2v 113.16 (3) Cd2x—As4—As1 118.43 (12)
Cu1—As1—As3vi 111.70 (3) Cd2x—As4—As2 101.77 (14)
Cu1—As1—As4 119.01 (3) Cd2iii—As4—As1 96.10 (10)
As2v—As1—As3vi 106.52 (3) Cd2iii—As4—As2 107.52 (12)
As2v—As1—As4 99.93 (3) As1—As4—As2 94.29 (3)

Symmetry codes: (i) −x, y, −z+1/2; (ii) −x−1/2, y−1/2, −z−1/2; (iii) −x−1/2, −y+1/2, −z; (iv) −x, −y, −z; (v) x, −y+1, z+1/2; (vi) −x, −y+1, −z; (vii) x−1/2, −y+1/2, z−1/2; (viii) x, −y+1, z−1/2; (ix) x+1/2, −y+1/2, z+1/2; (x) −x−1/2, y+1/2, −z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2539).

References

  1. Bauhofer, W., Wittmann, M. & von Schnering, H. G. (1981). J. Phys. Chem. Solids, 42, 687–695.
  2. Becker, P. J. & Coppens, P. (1974). Acta Cryst. A30, 129–147.
  3. Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Brandon, J. K., Brizard, R. Y., Chieh, P. C., McMillan, R. K. & Pearson, W. B. (1974). Acta Cryst. B30, 1412–1417.
  5. Clark, J. B. & Range, K. J. (1976). Z. Naturforsch. Teil B, 31, 158–162.
  6. Emmerling, F., Petri, D. & Röhr, C. (2004). Z. Anorg. Allg. Chem. 630, 2490–2501.
  7. Emmerling, F. & Röhr, C. (2002). Z. Naturforsch. Teil B, 57, 963–975.
  8. Heidenstamm, O. von, Johansson, A. & Westmann, S. (1968). Acta Chem. Scand. 22, 653–661.
  9. Hönle, W., Buresch, J., Wolf, J., Peters, K., Chang, J.-H. & von Schnering, H. G. (2002). Z. Kristallogr. New Cryst. Struct. 217, 489–490.
  10. Jeitschko, W., Foecker, A. J., Paschke, D., Dewalsky, M. V., Evers, Ch. B. H., Künnen, B., Lang, A., Kotzyba, G., Rodewald, U. Ch. & Möller, M. H. (2000). Z. Anorg. Allg. Chem. 626, 1112–1120.
  11. Kreiner, G. & Schaepers, M. (1997). J. Alloys Compd, 259, 83–114.
  12. Lange, S., Bawohl, M., Weihrich, R. & Nilges, T. (2008). Angew. Chem. Int. Ed. 47, 5654–5657. [DOI] [PubMed]
  13. Mansmann, M. (1965). Z. Kristallogr. 122, 399–406.
  14. Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.
  15. Petřiček, V., Dušek, M. & Palatinus, L. (2006). JANA2006 Institute of Physics, Praha, Czech Republic.
  16. Pöttgen, R., Hönle, W. & von Schnering, H. G. (2006). Phosphides: Solid-State Chemistry. Encyclopedia of Inorganic Chemistry, edited by R. B. King. New York: Wiley.
  17. Stoe & Cie (2011). X-AREA Stoe & Cie, Darmstadt, Germany.
  18. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811042127/wm2539sup1.cif

e-67-00i62-sup1.cif (12.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811042127/wm2539Isup2.hkl

e-67-00i62-Isup2.hkl (54.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES