Abstract
The first polyarsenic compound in the Cu–Cd–As system was obtained by solid-state reaction of the elements and has a refined composition of Cu4.35 (2)Cd1.65 (2)As16 (tetracopper dicadmium hexadecaarsenide). It adopts the Cu5InP16 structure type. The asymmetric unit consists of one Cu site, a split Cu/Cd site and four As sites. The polyanionic structure can be described as being composed of As6 rings in chair conformations which are connected in the 1-, 2-, 4- and 5-positions. The resulting layers evolve along the c axis perpendicular to the ab plane. One Cu atom exhibits site symmetry 2 and is tetrahedrally coordinated by four As atoms. The other Cu atom, representing the split site, and the corresponding Cd atom have different coordination spheres. While the Cu atom is tetrahedrally coordinated by four As atoms, the Cd atom has a [3 + 1] coordination with a considerably longer Cd—As distance.
Related literature
For Cu5InP16, see: Lange et al. (2008 ▶). For related polyphosphides, see: Pöttgen et al. (2006 ▶). For polyarsenides, see: Bauhofer et al. (1981 ▶); Jeitschko et al. (2000 ▶); Emmerling & Röhr (2002 ▶); Emmerling et al. (2004 ▶); Hönle et al. (2002 ▶). For binary Cu–Cd phases, see: Brandon et al. (1974 ▶); Kreiner & Schaepers (1997 ▶); von Heidenstamm et al. (1968 ▶). For related structures, see: Mansmann (1965 ▶); Clark & Range (1976 ▶). For crystallographic background, see: Becker & Coppens (1974 ▶).
Experimental
Crystal data
Cu4.35Cd1.65As16
M r = 1660.8
Monoclinic,
a = 11.8324 (6) Å
b = 10.4423 (4) Å
c = 8.0903 (4) Å
β = 110.480 (4)°
V = 936.44 (8) Å3
Z = 2
Mo Kα radiation
μ = 34.73 mm−1
T = 293 K
0.030 × 0.020 × 0.004 mm
Data collection
Stoe IPDS 2T diffractometer
Absorption correction: numerical (X-AREA; Stoe & Cie, 2011 ▶) T min = 0.205, T max = 0.785
12811 measured reflections
1268 independent reflections
1113 reflections with I > 3σ(I)
R int = 0.053
Refinement
R[F 2 > 2σ(F 2)] = 0.036
wR(F 2) = 0.072
S = 1.83
1268 reflections
56 parameters
Δρmax = 1.50 e Å−3
Δρmin = −1.67 e Å−3
Data collection: X-AREA (Stoe & Cie, 2011 ▶); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: Superflip (Palatinus & Chapuis, 2007 ▶) embedded in JANA2006 (Petřiček et al., 2006 ▶); program(s) used to refine structure: JANA2006; molecular graphics: DIAMOND (Brandenburg & Putz, 2005 ▶); software used to prepare material for publication: publCIF (Westrip, 2010 ▶).
Supplementary Material
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811042127/wm2539sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811042127/wm2539Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Selected bond lengths (Å).
| Cu1—As1 | 2.4254 (9) |
| Cu1—As3 | 2.3931 (9) |
| Cu2—As2 | 2.516 (5) |
| Cu2—As3 | 2.501 (5) |
| Cu2—As4i | 2.589 (6) |
| Cu2—As4ii | 2.524 (7) |
| Cd2—As2 | 2.856 (5) |
| Cd2—As3 | 2.516 (5) |
| Cd2—As4i | 2.475 (5) |
| Cd2—As4ii | 2.569 (6) |
Symmetry codes: (i)
; (ii)
.
Acknowledgments
The authors thank the German Science Foundation (DFG) for the kind support of this project within the SPP 1415.
supplementary crystallographic information
Comment
Besides the plethora of known polyphosphides (Pöttgen et al., 2006) only few polyarsenides are known up to date (Bauhofer et al., 1981; Jeitschko et al., 2000; Emmerling & Röhr, 2002; Emmerling et al., 2004; Hönle et al., 2002).
The title compound Cu4.35 (2)Cd1.65 (2)As16 is the first representative of a polyarsenide adopting the Cu5InP16 structure type (Lange et al., 2008). In accordance to the situation in Cu5InP16 where Cu and In are occupying the same site, a similar behavior is observed for the title compound, but here with a Cu/Cd split position. Mixing of Cu and Cd on one site is a common feature in intermetallic compounds and has been observed for instance for Cd3Cu4 (Kreiner & Schaepers, 1997) and Cd8Cu5 (von Heidenstamm et al., 1968; Brandon et al., 1974).
Cu—As distances in Cu4.35 (2)Cd1.65 (2)As16 range from 2.3931 (9) Å to 2.589 (6) Å and are comparable with the distances of 2.404 (1) Å to 2.590 (1) Å in Cu3As (Mansmann, 1965). The As—As distances in Cu4.35 (2)Cd1.65 (2)As16 are between 2.4242 (8) Å and 2.4644 (10) Å, in good accordance with the As—As distances in NdFe4As12 (2.428 Å - 2.499 Å) (Jeitschko et al., 2000). Cd—As distances are present between 2.475 (5) Å and 2.856 (5) Å which is consistent with values found for CdAs (2.473 (2) Å - 2.868 (2) Å) (Clark & Range, 1976).
Experimental
Cu4.35 (2)Cd1.65 (2)As16 was prepared by a solid state reaction from the elements Cu (ChemPur, shot, 99.999%), Cd (ChemPur, granules, 99.9999%) and As (ChemPur, pieces, 99.9999%). Arsenic was purified by sublimation in evacuated silica ampoules using a temperature gradient of 573 K to room temperature to separate As2O3 from the bulk-As and at 873 K to 573 K to sublimate As directly. The purified As was stored under protection gas atmosphere prior to use. The starting materials were reacted in stoichiometric amounts according the reported composition at 753 K for 7 days followed by a homogenization step by grinding. The procedure was repeated two times to finalize the formation of the title compound. Single crystals of suitable size could be separated from the bulk phase.
Refinement
The highest peak is 0.99 Å away from As3 and the deepest hole is 0.81 Å away from As4. We have tested two different structure models to describe the Cu/Cd distribution in the title compound. In the first model, Cu and Cd were refined on one common position restricting the coordinates and displacement parameters while keeping an overall full occupancy. In the second model, the coordinates were not restricted, leading to a split position for Cu and Cd. Comparable to the first model the sum of occupancy factors of both split position were set to one. After an evaluation of the refinement results for both models we decided the second model for structure description due to better and more reliable displacement and statistical parameters.
Figures
Fig. 1.
Crystal structure of Cu4.35 (2)Cd1.65 (2)As16, viewed along the c axis. Displacement ellipsoids are shown at the 90% probability level.
Crystal data
| Cu4.35Cd1.65As16 | F(000) = 1467 |
| Mr = 1660.8 | Dx = 5.888 Mg m−3 |
| Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: -C 2yc | Cell parameters from 12419 reflections |
| a = 11.8324 (6) Å | θ = 3.7–29.7° |
| b = 10.4423 (4) Å | µ = 34.73 mm−1 |
| c = 8.0903 (4) Å | T = 293 K |
| β = 110.480 (4)° | Plate, black |
| V = 936.44 (8) Å3 | 0.03 × 0.02 × 0.004 mm |
| Z = 2 |
Data collection
| Stoe IPDS 2T diffractometer | 1268 independent reflections |
| Radiation source: X-ray tube | 1113 reflections with I > 3σ(I) |
| plane graphite | Rint = 0.053 |
| Detector resolution: 6.67 pixels mm-1 | θmax = 29.3°, θmin = 3.7° |
| ω scans | h = −16→16 |
| Absorption correction: numerical (X-AREA; Stoe & Cie, 2011) | k = −14→14 |
| Tmin = 0.205, Tmax = 0.785 | l = −11→11 |
| 12811 measured reflections |
Refinement
| Refinement on F2 | 6 constraints |
| R[F2 > 2σ(F2)] = 0.036 | Weighting scheme based on measured s.u.'s w = 1/[σ2(I) + 0.0004I2] |
| wR(F2) = 0.072 | (Δ/σ)max = 0.007 |
| S = 1.83 | Δρmax = 1.50 e Å−3 |
| 1268 reflections | Δρmin = −1.67 e Å−3 |
| 56 parameters | Extinction correction: B-C type 1 Gaussian isotropic (Becker & Coppens, 1974) |
| 0 restraints | Extinction coefficient: 0.021 (2) |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | Occ. (<1) | |
| Cu1 | 0 | 0.41450 (10) | 0.25 | 0.0156 (3) | |
| Cu2 | −0.0942 (5) | 0.1309 (5) | −0.0886 (9) | 0.0198 (9) | 0.587 (6) |
| Cd2 | −0.0713 (4) | 0.1064 (5) | −0.0867 (7) | 0.0198 (9) | 0.413 (6) |
| As1 | −0.15337 (5) | 0.56586 (5) | 0.08461 (8) | 0.01309 (19) | |
| As2 | −0.23875 (5) | 0.30964 (6) | −0.22826 (8) | 0.01406 (19) | |
| As3 | 0.07426 (6) | 0.27955 (6) | 0.07165 (9) | 0.0171 (2) | |
| As4 | −0.33882 (6) | 0.48506 (7) | −0.13511 (9) | 0.0232 (2) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Cu1 | 0.0132 (5) | 0.0182 (5) | 0.0157 (5) | 0 | 0.0055 (4) | 0 |
| Cu2 | 0.0171 (16) | 0.0237 (16) | 0.0194 (4) | −0.0067 (9) | 0.0076 (10) | −0.0062 (10) |
| Cd2 | 0.0171 (16) | 0.0237 (16) | 0.0194 (4) | −0.0067 (9) | 0.0076 (10) | −0.0062 (10) |
| As1 | 0.0115 (3) | 0.0139 (3) | 0.0130 (3) | −0.0003 (2) | 0.0033 (2) | 0.0001 (2) |
| As2 | 0.0126 (3) | 0.0143 (3) | 0.0143 (3) | 0.0015 (2) | 0.0034 (2) | 0.0016 (2) |
| As3 | 0.0153 (3) | 0.0172 (3) | 0.0198 (3) | 0.0025 (2) | 0.0074 (2) | 0.0046 (2) |
| As4 | 0.0128 (3) | 0.0296 (3) | 0.0265 (4) | −0.0031 (3) | 0.0061 (3) | −0.0155 (3) |
Geometric parameters (Å, °)
| Cu1—As1 | 2.4254 (9) | Cd2—As2 | 2.856 (5) |
| Cu1—As1i | 2.4254 (9) | Cd2—As3 | 2.516 (5) |
| Cu1—As3 | 2.3931 (9) | Cd2—As4ii | 2.475 (5) |
| Cu1—As3i | 2.3931 (9) | Cd2—As4iii | 2.569 (6) |
| Cu2—Cd2 | 0.370 (8) | As1—As2v | 2.4644 (10) |
| Cu2—As2 | 2.516 (5) | As1—As3vi | 2.4307 (10) |
| Cu2—As3 | 2.501 (5) | As1—As4 | 2.4408 (8) |
| Cu2—As4ii | 2.589 (6) | As2—As3vii | 2.4242 (8) |
| Cu2—As4iii | 2.524 (7) | As2—As4 | 2.4392 (10) |
| Cd2—Cd2iv | 2.845 (7) | ||
| As1—Cu1—As1i | 98.67 (4) | As3vi—As1—As4 | 105.22 (3) |
| As1—Cu1—As3 | 114.38 (2) | Cu2—As2—Cd2 | 3.1 (2) |
| As1—Cu1—As3i | 110.77 (2) | Cu2—As2—As1viii | 107.87 (17) |
| As1i—Cu1—As3 | 110.77 (2) | Cu2—As2—As3vii | 109.44 (12) |
| As1i—Cu1—As3i | 114.38 (2) | Cu2—As2—As4 | 138.19 (17) |
| As3—Cu1—As3i | 107.85 (4) | Cd2—As2—As1viii | 105.21 (13) |
| Cd2—Cu2—As2 | 155.1 (16) | Cd2—As2—As3vii | 108.99 (10) |
| Cd2—Cu2—As3 | 88.1 (11) | Cd2—As2—As4 | 141.07 (12) |
| Cd2—Cu2—As4ii | 68.2 (12) | As1viii—As2—As3vii | 105.49 (3) |
| Cd2—Cu2—As4iii | 92.7 (15) | As1viii—As2—As4 | 98.12 (3) |
| As2—Cu2—As3 | 93.76 (19) | As3vii—As2—As4 | 93.81 (3) |
| As2—Cu2—As4ii | 95.40 (19) | Cu1—As3—Cu2 | 106.49 (17) |
| As2—Cu2—As4iii | 110.1 (3) | Cu1—As3—Cd2 | 113.57 (14) |
| As3—Cu2—As4ii | 139.5 (3) | Cu1—As3—As1vi | 102.24 (3) |
| As3—Cu2—As4iii | 108.6 (2) | Cu1—As3—As2ix | 105.39 (3) |
| As4ii—Cu2—As4iii | 105.0 (2) | Cu2—As3—Cd2 | 8.44 (18) |
| Cu2—Cd2—Cd2iv | 149.6 (16) | Cu2—As3—As1vi | 121.65 (17) |
| Cu2—Cd2—As2 | 21.8 (14) | Cu2—As3—As2ix | 118.91 (13) |
| Cu2—Cd2—As3 | 83.5 (11) | Cd2—As3—As1vi | 122.14 (14) |
| Cu2—Cd2—As4ii | 103.9 (12) | Cd2—As3—As2ix | 111.47 (11) |
| Cu2—Cd2—As4iii | 79.0 (15) | As1vi—As3—As2ix | 100.07 (3) |
| Cd2iv—Cd2—As2 | 170.7 (3) | Cu2x—As4—Cu2iii | 145.40 (19) |
| Cd2iv—Cd2—As3 | 97.37 (17) | Cu2x—As4—Cd2x | 7.97 (17) |
| Cd2iv—Cd2—As4ii | 92.32 (19) | Cu2x—As4—Cd2iii | 138.18 (18) |
| Cd2iv—Cd2—As4iii | 71.60 (19) | Cu2x—As4—As1 | 110.54 (12) |
| As2—Cd2—As3 | 85.72 (15) | Cu2x—As4—As2 | 102.12 (16) |
| As2—Cd2—As4ii | 89.91 (14) | Cu2iii—As4—Cd2x | 138.99 (18) |
| As2—Cd2—As4iii | 99.07 (19) | Cu2iii—As4—Cd2iii | 8.26 (17) |
| As3—Cd2—As4ii | 146.1 (3) | Cu2iii—As4—As1 | 94.09 (12) |
| As3—Cd2—As4iii | 106.8 (2) | Cu2iii—As4—As2 | 99.75 (14) |
| As4ii—Cd2—As4iii | 107.07 (19) | Cd2x—As4—Cd2iii | 132.39 (17) |
| Cu1—As1—As2v | 113.16 (3) | Cd2x—As4—As1 | 118.43 (12) |
| Cu1—As1—As3vi | 111.70 (3) | Cd2x—As4—As2 | 101.77 (14) |
| Cu1—As1—As4 | 119.01 (3) | Cd2iii—As4—As1 | 96.10 (10) |
| As2v—As1—As3vi | 106.52 (3) | Cd2iii—As4—As2 | 107.52 (12) |
| As2v—As1—As4 | 99.93 (3) | As1—As4—As2 | 94.29 (3) |
Symmetry codes: (i) −x, y, −z+1/2; (ii) −x−1/2, y−1/2, −z−1/2; (iii) −x−1/2, −y+1/2, −z; (iv) −x, −y, −z; (v) x, −y+1, z+1/2; (vi) −x, −y+1, −z; (vii) x−1/2, −y+1/2, z−1/2; (viii) x, −y+1, z−1/2; (ix) x+1/2, −y+1/2, z+1/2; (x) −x−1/2, y+1/2, −z−1/2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2539).
References
- Bauhofer, W., Wittmann, M. & von Schnering, H. G. (1981). J. Phys. Chem. Solids, 42, 687–695.
- Becker, P. J. & Coppens, P. (1974). Acta Cryst. A30, 129–147.
- Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
- Brandon, J. K., Brizard, R. Y., Chieh, P. C., McMillan, R. K. & Pearson, W. B. (1974). Acta Cryst. B30, 1412–1417.
- Clark, J. B. & Range, K. J. (1976). Z. Naturforsch. Teil B, 31, 158–162.
- Emmerling, F., Petri, D. & Röhr, C. (2004). Z. Anorg. Allg. Chem. 630, 2490–2501.
- Emmerling, F. & Röhr, C. (2002). Z. Naturforsch. Teil B, 57, 963–975.
- Heidenstamm, O. von, Johansson, A. & Westmann, S. (1968). Acta Chem. Scand. 22, 653–661.
- Hönle, W., Buresch, J., Wolf, J., Peters, K., Chang, J.-H. & von Schnering, H. G. (2002). Z. Kristallogr. New Cryst. Struct. 217, 489–490.
- Jeitschko, W., Foecker, A. J., Paschke, D., Dewalsky, M. V., Evers, Ch. B. H., Künnen, B., Lang, A., Kotzyba, G., Rodewald, U. Ch. & Möller, M. H. (2000). Z. Anorg. Allg. Chem. 626, 1112–1120.
- Kreiner, G. & Schaepers, M. (1997). J. Alloys Compd, 259, 83–114.
- Lange, S., Bawohl, M., Weihrich, R. & Nilges, T. (2008). Angew. Chem. Int. Ed. 47, 5654–5657. [DOI] [PubMed]
- Mansmann, M. (1965). Z. Kristallogr. 122, 399–406.
- Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.
- Petřiček, V., Dušek, M. & Palatinus, L. (2006). JANA2006 Institute of Physics, Praha, Czech Republic.
- Pöttgen, R., Hönle, W. & von Schnering, H. G. (2006). Phosphides: Solid-State Chemistry. Encyclopedia of Inorganic Chemistry, edited by R. B. King. New York: Wiley.
- Stoe & Cie (2011). X-AREA Stoe & Cie, Darmstadt, Germany.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811042127/wm2539sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811042127/wm2539Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report

