Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 22;67(Pt 11):i65. doi: 10.1107/S1600536811042413

La5Zn2Sn

Igor Oshchapovsky a,*, Volodymyr Pavlyuk a,, Grygoriy Dmytriv a, Igor Chumak b, Helmut Ehrenberg c
PMCID: PMC3246910  PMID: 22219730

Abstract

A single crystal of penta­lanthanum dizinc stannide, La5Zn2Sn, was obtained from the elements in a resistance furnace. It belongs to the Mo5SiB2 structure type, which is a ternary ordered variant of the Cr5B3 structure type. The space is filled by bicapped tetra­gonal anti­prisms from lanthanum atoms around tin atoms sharing their vertices. Zinc atoms fill voids between these bicapped tetra­gonal anti­prisms. All four atoms in the asymmetric unit reside on special positions with the following site symmetries: La1 (..m); La2 (4/m..); Zn (m.2m); Sn (422).

Related literature

For general background to {Tb,La}–Zn–{Sn,Pb} ternary systems, see: Manfrinetti & Pani, (2005); Oshchapovsky et al. (2010, 2011); Pavlyuk et al. (2009). For related structures, see: Bertaut (1953). For isotypic structures, see: Aronsson (1958).

Experimental

Crystal data

  • La5Zn2Sn

  • M r = 944.04

  • Tetragonal, Inline graphic

  • a = 8.3277 (12) Å

  • c = 14.334 (3) Å

  • V = 994.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 28.10 mm−1

  • T = 293 K

  • 0.04 × 0.04 × 0.01 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.340, T max = 0.765

  • 9291 measured reflections

  • 419 independent reflections

  • 346 reflections with I > 2σ(I)

  • R int = 0.091

Refinement

  • R[F 2 > 2σ(F 2)] = 0.027

  • wR(F 2) = 0.056

  • S = 1.14

  • 419 reflections

  • 14 parameters

  • Δρmax = 1.60 e Å−3

  • Δρmin = −1.59 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and JANA2006 (Petricek et al., 2006); molecular graphics: DIAMOND (Brandenburg, 2006) and VESTA (Momma & Izumi, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811042413/ru2016sup1.cif

e-67-00i65-sup1.cif (19.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811042413/ru2016Isup2.hkl

e-67-00i65-Isup2.hkl (21.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support from the Ministry of Education and Science, Youth and Sport of Ukraine (N 0111U001089) is gratefully acknowledged.

supplementary crystallographic information

Comment

Ternary compounds formed by rare-earth, transition metal and d-metal often have interesting physical and chemical properties e. g. strong ferromagnetism, hydrogen storage capabilities and so on. The systematic investigation of the components interaction in the {Tb, La}-Zn-{Sn,Pb} ternary systems can lead to development of functional materials (for crystal structures of ternary compounds see: TbZnSn –Manfrinetti & Pani, (2005), Pavlyuk et al., (2009), TbZnSn2 - Pavlyuk et al., (2009), Tb13ZnSn13-Oshchapovsky et al., (2010) and LaZn12.37-Oshchapovsky et al., (2011)).

The title compound crystallizes in Mo5SiB2 (Aronsson, 1958) structure type which is an ordered superstructure of Cr5B3 type (Bertaut, 1953). Unit cell projection together with coordination polyhedra are given in Fig.1. Coordination polyhedra of the La1 atoms are 16- vertex polyhedra. Sn atoms are surrounded by ten neighbours forming bicapped tetragonal antiprism. La2 atoms are enclosed into trigon - tetrahexahedron with CN=14. And coordination polyhedra of the Zn atoms are bicapped trigonal prisms with CN=9. Coordination polyhedra of Sn atoms share their vertices forming three dimensional framework. The voids in this framework are filled by zinc atoms. (See graphical abstract).

The way of bond formation in this compound was assumed using only X-ray diffraction data. Further structure refinement was carried out by means of Jana2006 software package using anharmonic ADP for La1 and Zn atoms. Anharmonic displacement parameters for other atoms were not refined because in case of their refinement their standard deviations were larger than obtained values. As the result we gained lower absolute values of peak and hole in the difference Fourier map (1.02 and -1.17 e Å-3 respectively). The resulting isosurface drawn at the level 0.308 e/Å3 and sections of difference Fourier map are given in Fig. 2. These maps and sections are noisy but some trends in location of positive and negative regions can be noticed. Positive residual electron density is mostly situated around zinc atoms and near layers made of tin atoms. Negative residual density is mostly located between lanthanum atoms which means that lanthanum atoms donate their electrons to zinc and tin atoms. Similar behaviour of lanthanum atoms can be observed in the LaZn12.37 compound using electronic structure calculations (See Oshchapovsky et al., (2011)). As a conclusion this compound besides dominate metallic bonding has a weak ionic interaction between lanthanum and zinc and tin atoms.

Experimental

Small good quality single-crystal of title compound was isolated from alloy with composition La7ZnSn2 during systematic investigation of lanthanum-rich region of La—Zn—Sn ternary system. The samples with high lanthanum contents were prepared by melting of pieces of pure metals in evacuated quartz ampoule with subsequent annealing at 600 0C for 30 days. Further phase analysis showed the existence of title compound in sample with composition La7ZnSn2 as well as in the other lanthanum-rich ternary alloys. However they were non equilibrium.

Figures

Fig. 1.

Fig. 1.

Unit cell projection and coordination polyhedra in the La5Zn2Sn compound

Fig. 2.

Fig. 2.

Isosurface drawn at 0.308 e/Å3 and sections of difference Fourier map after the refinement of crystal structure of the La5Zn2Sn compound

Crystal data

La5Zn2Sn Dx = 6.308 Mg m3
Mr = 944.04 Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I4/mcm Cell parameters from 1223 reflections
Hall symbol: -I 4 2c θ = 5.7–26.1°
a = 8.3277 (12) Å µ = 28.10 mm1
c = 14.334 (3) Å T = 293 K
V = 994.1 (3) Å3 Plate, grey
Z = 4 0.04 × 0.04 × 0.01 mm
F(000) = 1580.0

Data collection

Bruker APEXII CCD diffractometer 419 independent reflections
Radiation source: sealed tube 346 reflections with I > 2σ(I)
graphite Rint = 0.091
Detector resolution: 8.366 pixels mm-1 θmax = 30.1°, θmin = 2.8°
φ and ω scans h = −11→11
Absorption correction: multi-scan (SADABS; Bruker, 2004) k = −11→11
Tmin = 0.340, Tmax = 0.765 l = −20→19
9291 measured reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Primary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.027 Secondary atom site location: difference Fourier map
wR(F2) = 0.056 w = 1/[σ2(Fo2) + (0.0144P)2 + 16.4322P] where P = (Fo2 + 2Fc2)/3
S = 1.14 (Δ/σ)max = 0.004
419 reflections Δρmax = 1.60 e Å3
14 parameters Δρmin = −1.59 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
La1 0.66685 (5) 0.16685 (5) 0.14853 (4) 0.02054 (16)
La2 0.0000 0.0000 0.0000 0.0357 (3)
Zn 0.12383 (12) 0.62383 (12) 0.0000 0.0139 (3)
Sn 0.0000 0.0000 0.2500 0.0145 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
La1 0.01937 (19) 0.01937 (19) 0.0229 (3) 0.00430 (19) 0.000 0.000
La2 0.0291 (4) 0.0291 (4) 0.0490 (8) 0.000 0.000 0.000
Zn 0.0123 (4) 0.0123 (4) 0.0171 (7) 0.0013 (5) 0.000 0.000
Sn 0.0129 (3) 0.0129 (3) 0.0177 (5) 0.000 0.000 0.000

Geometric parameters (Å, °)

La1—Zni 3.2436 (9) La2—La1xvii 3.7630 (6)
La1—Znii 3.2436 (9) Zn—Znx 2.917 (3)
La1—Zniii 3.2573 (12) Zn—La1xviii 3.2436 (9)
La1—Sniv 3.4268 (5) Zn—La1xvi 3.2436 (9)
La1—Snv 3.4268 (5) Zn—La1xix 3.2436 (9)
La1—La1vi 3.5068 (12) Zn—La1xiv 3.2436 (9)
La1—La2iv 3.7630 (6) Zn—La1xx 3.2573 (12)
La1—La2vii 3.7630 (6) Zn—La1iii 3.2573 (12)
La1—La1viii 3.9301 (12) Zn—La2xxi 3.2980 (8)
La2—Znix 3.2980 (8) Zn—La2vii 3.2980 (8)
La2—Znii 3.2980 (8) Sn—La1xxii 3.4268 (5)
La2—Znx 3.2980 (8) Sn—La1xvii 3.4268 (5)
La2—Znxi 3.2980 (8) Sn—La1xiv 3.4268 (5)
La2—Snxii 3.5835 (7) Sn—La1v 3.4268 (5)
La2—Sn 3.5835 (7) Sn—La1xxiii 3.4268 (5)
La2—La1xiii 3.7630 (6) Sn—La1xxiv 3.4268 (5)
La2—La1xiv 3.7630 (6) Sn—La1viii 3.4268 (5)
La2—La1xv 3.7630 (6) Sn—La1xxv 3.4268 (5)
La2—La1viii 3.7630 (6) Sn—La2xxvi 3.5835 (7)
La2—La1xvi 3.7630 (6)
Zni—La1—Znii 53.44 (5) Znii—La2—La1xvi 54.461 (17)
Zni—La1—Zniii 91.69 (2) Znx—La2—La1xvi 54.208 (18)
Znii—La1—Zniii 91.69 (2) Znxi—La2—La1xvi 125.792 (18)
Zni—La1—Sniv 93.75 (2) Snxii—La2—La1xvi 55.545 (10)
Znii—La1—Sniv 146.93 (3) Sn—La2—La1xvi 124.455 (10)
Zniii—La1—Sniv 93.506 (15) La1xiii—La2—La1xvi 111.09 (2)
Zni—La1—Snv 146.93 (3) La1xiv—La2—La1xvi 68.91 (2)
Znii—La1—Snv 93.75 (2) La1xv—La2—La1xvi 71.332 (10)
Zniii—La1—Snv 93.506 (15) La1viii—La2—La1xvi 108.668 (10)
Sniv—La1—Snv 118.450 (18) Znix—La2—La1xvii 54.461 (17)
Zni—La1—La1vi 151.98 (2) Znii—La2—La1xvii 125.539 (17)
Znii—La1—La1vi 151.98 (2) Znx—La2—La1xvii 125.792 (18)
Zniii—La1—La1vi 96.86 (3) Znxi—La2—La1xvii 54.208 (18)
Sniv—La1—La1vi 59.225 (9) Snxii—La2—La1xvii 124.455 (10)
Snv—La1—La1vi 59.225 (9) Sn—La2—La1xvii 55.545 (10)
Zni—La1—La2iv 55.564 (18) La1xiii—La2—La1xvii 68.91 (2)
Znii—La1—La2iv 97.94 (3) La1xiv—La2—La1xvii 111.09 (2)
Zniii—La1—La2iv 55.477 (10) La1xv—La2—La1xvii 108.668 (10)
Sniv—La1—La2iv 59.571 (13) La1viii—La2—La1xvii 71.332 (10)
Snv—La1—La2iv 146.931 (17) La1xvi—La2—La1xvii 180.000 (16)
La1vi—La1—La2iv 108.903 (17) Znx—Zn—La1xviii 63.28 (2)
Zni—La1—La2vii 97.94 (3) Znx—Zn—La1xvi 63.28 (2)
Znii—La1—La2vii 55.564 (18) La1xviii—Zn—La1xvi 74.58 (3)
Zniii—La1—La2vii 55.477 (10) Znx—Zn—La1xix 63.28 (2)
Sniv—La1—La2vii 146.931 (17) La1xviii—Zn—La1xix 82.05 (3)
Snv—La1—La2vii 59.571 (13) La1xvi—Zn—La1xix 126.56 (5)
La1vi—La1—La2vii 108.903 (17) Znx—Zn—La1xiv 63.28 (2)
La2iv—La1—La2vii 102.966 (18) La1xviii—Zn—La1xiv 126.56 (5)
Zni—La1—La1viii 52.712 (14) La1xvi—Zn—La1xiv 82.05 (3)
Znii—La1—La1viii 52.712 (14) La1xix—Zn—La1xiv 74.58 (3)
Zniii—La1—La1viii 139.19 (2) Znx—Zn—La1xx 139.19 (2)
Sniv—La1—La1viii 106.604 (9) La1xviii—Zn—La1xx 140.29 (2)
Snv—La1—La1viii 106.604 (9) La1xvi—Zn—La1xx 140.29 (2)
La1vi—La1—La1viii 123.951 (19) La1xix—Zn—La1xx 84.909 (18)
La2iv—La1—La1viii 105.084 (8) La1xiv—Zn—La1xx 84.909 (18)
La2vii—La1—La1viii 105.084 (8) Znx—Zn—La1iii 139.19 (2)
Zni—La1—La1xxvii 87.66 (2) La1xviii—Zn—La1iii 84.909 (18)
Znii—La1—La1xxvii 113.473 (17) La1xvi—Zn—La1iii 84.909 (18)
Zniii—La1—La1xxvii 147.382 (8) La1xix—Zn—La1iii 140.29 (2)
Sniv—La1—La1xxvii 54.057 (10) La1xiv—Zn—La1iii 140.29 (2)
Snv—La1—La1xxvii 104.62 (2) La1xx—Zn—La1iii 81.63 (4)
La1vi—La1—La1xxvii 70.91 (2) Znx—Zn—La2xxi 116.78 (2)
La2iv—La1—La1xxvii 98.861 (14) La1xviii—Zn—La2xxi 70.228 (8)
La2vii—La1—La1xxvii 156.689 (9) La1xvi—Zn—La2xxi 138.024 (12)
La1viii—La1—La1xxvii 60.762 (9) La1xix—Zn—La2xxi 70.228 (8)
Zni—La1—La1xxii 113.473 (17) La1xiv—Zn—La2xxi 138.024 (12)
Znii—La1—La1xxii 87.66 (2) La1xx—Zn—La2xxi 70.06 (2)
Zniii—La1—La1xxii 147.382 (8) La1iii—Zn—La2xxi 70.06 (2)
Sniv—La1—La1xxii 104.62 (2) Znx—Zn—La2vii 116.78 (2)
Snv—La1—La1xxii 54.057 (10) La1xviii—Zn—La2vii 138.024 (12)
La1vi—La1—La1xxii 70.91 (2) La1xvi—Zn—La2vii 70.228 (8)
La2iv—La1—La1xxii 156.689 (9) La1xix—Zn—La2vii 138.024 (12)
La2vii—La1—La1xxii 98.861 (14) La1xiv—Zn—La2vii 70.228 (8)
La1viii—La1—La1xxii 60.762 (9) La1xx—Zn—La2vii 70.06 (2)
La1xxvii—La1—La1xxii 58.477 (18) La1iii—Zn—La2vii 70.06 (2)
Znix—La2—Znii 180.0 La2xxi—Zn—La2vii 126.44 (4)
Znix—La2—Znx 90.0 La1xxii—Sn—La1xvii 146.791 (18)
Znii—La2—Znx 90.0 La1xxii—Sn—La1xiv 61.550 (18)
Znix—La2—Znxi 90.0 La1xvii—Sn—La1xiv 129.77 (2)
Znii—La2—Znxi 90.0 La1xxii—Sn—La1v 79.622 (8)
Znx—La2—Znxi 180.0 La1xvii—Sn—La1v 132.159 (17)
Znix—La2—Snxii 90.0 La1xiv—Sn—La1v 71.89 (2)
Znii—La2—Snxii 90.0 La1xxii—Sn—La1xxiii 129.77 (2)
Znx—La2—Snxii 90.0 La1xvii—Sn—La1xxiii 61.550 (18)
Znxi—La2—Snxii 90.0 La1xiv—Sn—La1xxiii 146.791 (18)
Znix—La2—Sn 90.0 La1v—Sn—La1xxiii 79.622 (8)
Znii—La2—Sn 90.0 La1xxii—Sn—La1xxiv 132.159 (17)
Znx—La2—Sn 90.0 La1xvii—Sn—La1xxiv 79.622 (8)
Znxi—La2—Sn 90.0 La1xiv—Sn—La1xxiv 79.622 (8)
Snxii—La2—Sn 180.0 La1v—Sn—La1xxiv 61.550 (18)
Znix—La2—La1xiii 54.461 (17) La1xxiii—Sn—La1xxiv 71.89 (2)
Znii—La2—La1xiii 125.539 (17) La1xxii—Sn—La1viii 71.89 (2)
Znx—La2—La1xiii 125.792 (18) La1xvii—Sn—La1viii 79.622 (8)
Znxi—La2—La1xiii 54.208 (18) La1xiv—Sn—La1viii 79.622 (8)
Snxii—La2—La1xiii 55.544 (10) La1v—Sn—La1viii 146.791 (18)
Sn—La2—La1xiii 124.456 (10) La1xxiii—Sn—La1viii 132.159 (17)
Znix—La2—La1xiv 125.539 (17) La1xxiv—Sn—La1viii 129.77 (2)
Znii—La2—La1xiv 54.461 (17) La1xxii—Sn—La1xxv 79.622 (8)
Znx—La2—La1xiv 54.208 (18) La1xvii—Sn—La1xxv 71.89 (2)
Znxi—La2—La1xiv 125.792 (18) La1xiv—Sn—La1xxv 132.159 (17)
Snxii—La2—La1xiv 124.456 (10) La1v—Sn—La1xxv 129.77 (2)
Sn—La2—La1xiv 55.544 (10) La1xxiii—Sn—La1xxv 79.622 (8)
La1xiii—La2—La1xiv 180.000 (16) La1xxiv—Sn—La1xxv 146.791 (18)
Znix—La2—La1xv 54.208 (18) La1viii—Sn—La1xxv 61.550 (18)
Znii—La2—La1xv 125.792 (18) La1xxii—Sn—La2xxvi 64.885 (10)
Znx—La2—La1xv 54.461 (17) La1xvii—Sn—La2xxvi 115.115 (10)
Znxi—La2—La1xv 125.539 (17) La1xiv—Sn—La2xxvi 115.115 (10)
Snxii—La2—La1xv 55.544 (10) La1v—Sn—La2xxvi 64.885 (10)
Sn—La2—La1xv 124.456 (10) La1xxiii—Sn—La2xxvi 64.885 (10)
La1xiii—La2—La1xv 71.332 (10) La1xxiv—Sn—La2xxvi 115.115 (10)
La1xiv—La2—La1xv 108.668 (10) La1viii—Sn—La2xxvi 115.115 (10)
Znix—La2—La1viii 125.792 (18) La1xxv—Sn—La2xxvi 64.885 (10)
Znii—La2—La1viii 54.208 (18) La1xxii—Sn—La2 115.115 (10)
Znx—La2—La1viii 125.539 (17) La1xvii—Sn—La2 64.885 (10)
Znxi—La2—La1viii 54.461 (17) La1xiv—Sn—La2 64.885 (10)
Snxii—La2—La1viii 124.456 (10) La1v—Sn—La2 115.115 (10)
Sn—La2—La1viii 55.544 (10) La1xxiii—Sn—La2 115.115 (10)
La1xiii—La2—La1viii 108.668 (10) La1xxiv—Sn—La2 64.885 (10)
La1xiv—La2—La1viii 71.332 (10) La1viii—Sn—La2 64.885 (10)
La1xv—La2—La1viii 180.000 (18) La1xxv—Sn—La2 115.115 (10)
Znix—La2—La1xvi 125.539 (17) La2xxvi—Sn—La2 180.0

Symmetry codes: (i) y, −x, −z; (ii) −y+1, x, z; (iii) −x+1, −y+1, −z; (iv) x+1, y, z; (v) −x+1/2, −y+1/2, −z+1/2; (vi) −x+3/2, −y+1/2, −z+1/2; (vii) −x+1/2, y+1/2, −z; (viii) −x+1, −y, z; (ix) y−1, −x, −z; (x) −x, −y+1, −z; (xi) x, y−1, z; (xii) −x, −y, −z; (xiii) −y, x−1, −z; (xiv) y, −x+1, z; (xv) x−1, y, −z; (xvi) y, −x+1, −z; (xvii) −y, x−1, z; (xviii) −y, x, −z; (xix) −y, x, z; (xx) −x+1, −y+1, z; (xxi) x, y+1, z; (xxii) −y+1/2, x−1/2, −z+1/2; (xxiii) y−1/2, −x+1/2, −z+1/2; (xxiv) x−1, y, z; (xxv) x−1/2, y−1/2, −z+1/2; (xxvi) −x, y, −z+1/2; (xxvii) y+1/2, −x+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RU2016).

References

  1. Aronsson, B. (1958). Acta Chem. Scand. 12, 31–37.
  2. Bertaut, F. (1953). C. R. Hebd. Seances Acad. Sci. 236, 1055–1056.
  3. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Bruker (2004). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Manfrinetti, P. & Pani, M. (2005). J. Alloys Compd, 393, 180–184.
  6. Momma, K. & Izumi, F. (2008). J. Appl. Cryst. 41, 653–658.
  7. Oshchapovsky, I., Pavlyuk, V., Dmytriv, G. & White, F. (2011). Acta Cryst. E67, i43. [DOI] [PMC free article] [PubMed]
  8. Oshchapovsky, I., Pavlyuk, V., Fässler, T. F. & Hlukhyy, V. (2010). Chem. Met. Alloys, 3, 177–183.
  9. Pavlyuk, V., Oshchapovsky, I. & Marciniak, B. (2009). J. Alloys Compd, 477, 145–148.
  10. Petricek, V., Dusek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811042413/ru2016sup1.cif

e-67-00i65-sup1.cif (19.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811042413/ru2016Isup2.hkl

e-67-00i65-Isup2.hkl (21.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES