Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 5;67(Pt 11):m1475–m1476. doi: 10.1107/S1600536811039766

(Methanol-κO)(methano­lato-κO)oxido{N′-[1-(2-oxidonaphthalen-1-yl-κO)ethyl­idene]nicotinohydrazidato-κ2 N′,O}vanadium(V)

Chen-Yi Wang a,*, Juan-Juan Hu b, Hai-Yu Tu a, Pei-Fei Zhu a, Su-Jun Sheng a
PMCID: PMC3246913  PMID: 22219733

Abstract

The title oxovanadium(V) complex, [V(C18H13N3O2)(CH3O)O(CH3OH)], was obtained by the reaction of 1-(2-hy­droxy­naphthalen-1-yl)ethanone, nicotinohydrazide and vanadyl sulfate in methanol. The VV atom is six-coordinated by the N,N,O-tridentate Schiff base ligand, one methano­late O atom, one methanol O atom and one oxide O atom, forming a distorted octa­hedral geometry. The methanol O atom lies trans to the V=O group. The dihedral angle between the pyridine ring and the naphthalene ring system is 31.52 (10)°. In the crystal, inversion dimers linked by pairs of O—H⋯N hydrogen bonds occur.

Related literature

For related Schiff base complexes, see: Wang (2009); Wang & Ye (2011). For similar oxidovanadium complexes, see: Deng et al. (2005); Gao et al. (2005); Huo et al. (2004).graphic file with name e-67-m1475-scheme1.jpg

Experimental

Crystal data

  • [V(C18H13N3O2)(CH3O)O(CH4O)]

  • M r = 433.33

  • Triclinic, Inline graphic

  • a = 8.056 (2) Å

  • b = 8.931 (3) Å

  • c = 14.204 (3) Å

  • α = 92.312 (1)°

  • β = 95.418 (2)°

  • γ = 105.481 (2)°

  • V = 978.2 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.55 mm−1

  • T = 298 K

  • 0.18 × 0.17 × 0.17 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.908, T max = 0.913

  • 6564 measured reflections

  • 4117 independent reflections

  • 3350 reflections with I > 2σ(I)

  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.101

  • S = 1.05

  • 4117 reflections

  • 268 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811039766/hb6424sup1.cif

e-67-m1475-sup1.cif (19.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811039766/hb6424Isup2.hkl

e-67-m1475-Isup2.hkl (201.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

V1—O3 1.5826 (17)
V1—O5 1.7796 (15)
V1—O1 1.8555 (15)
V1—O2 1.9716 (15)
V1—N1 2.1143 (17)
V1—O4 2.3162 (18)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯N3i 0.84 (1) 1.90 (1) 2.734 (3) 173 (3)

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported financially by the Natural Science Foundation of China (No. 31071856), the Applied Research Project on Nonprofit Technology of Zhejiang Province (No. 2010 C32060), the Natural Science Foundation of Zhejiang Province (No. Y407318) and the Technological Innovation Project (sinfonietta talent plan) of college students in Zhejiang Province (No. 2010R42525 & No. 2011R425027).

supplementary crystallographic information

Comment

As part of our investigations into new Schiff base complexes (Wang & Ye, 2011; Wang, 2009), we have synthesized the title compound, a new mononuclear oxovanadium(V) complex, Fig. 1. The V atom in the complex is six-coordinated by the NNO donor atoms of the Schiff base ligand, one methoxy O atom, one methanol O atom, and one oxo O atom, forming an octahedral geometry. The V–O and V–N bond lengths (Table 1) are typical and are comparable with those observed in other similar vanadium complexes (Deng et al., 2005; Gao et al., 2005; Huo et al., 2004).

Experimental

1-(2-Hydroxynaphthalen-1-yl)ethanone (1.0 mmol, 0.19 g), nicotinohydrazide (1.0 mmol, 0.14 g), and vanadyl sulfate (1.0 mmol, 0.16 g) were dissolved in methanol (30 ml). The mixture was stirred at room temperature for 10 min to give a clear brown solution. After keeping the solution in air for a week, brown block-shaped crystals were formed at the bottom of the vessel.

Refinement

The methanol H atom was located from a difference Fourier map and refined isotropically, with O—H distance restrained to 0.85 (1) Å. The remaining H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.96 Å, and with Uiso(H) set at 1.2 or 1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level.

Crystal data

[V(C18H13N3O2)(CH3O)O(CH4O)] Z = 2
Mr = 433.33 F(000) = 448
Triclinic, P1 Dx = 1.471 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.056 (2) Å Cell parameters from 2743 reflections
b = 8.931 (3) Å θ = 2.6–28.3°
c = 14.204 (3) Å µ = 0.55 mm1
α = 92.312 (1)° T = 298 K
β = 95.418 (2)° Block, brown
γ = 105.481 (2)° 0.18 × 0.17 × 0.17 mm
V = 978.2 (4) Å3

Data collection

Bruker SMART CCD diffractometer 4117 independent reflections
Radiation source: fine-focus sealed tube 3350 reflections with I > 2σ(I)
graphite Rint = 0.019
ω scans θmax = 27.0°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −9→10
Tmin = 0.908, Tmax = 0.913 k = −11→11
6564 measured reflections l = −18→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0426P)2 + 0.4135P] where P = (Fo2 + 2Fc2)/3
4117 reflections (Δ/σ)max = 0.001
268 parameters Δρmax = 0.24 e Å3
1 restraint Δρmin = −0.34 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
V1 0.72590 (5) 0.34810 (4) 0.26717 (2) 0.03238 (12)
N1 0.8461 (2) 0.2127 (2) 0.18547 (11) 0.0313 (4)
N2 0.7882 (2) 0.1918 (2) 0.08861 (11) 0.0334 (4)
N3 0.3240 (3) 0.2650 (3) −0.12462 (14) 0.0468 (5)
O1 0.9408 (2) 0.40094 (18) 0.33860 (10) 0.0393 (4)
O2 0.58351 (19) 0.29999 (18) 0.14338 (10) 0.0373 (4)
O3 0.6236 (2) 0.20826 (19) 0.32235 (11) 0.0436 (4)
O4 0.8772 (2) 0.5456 (2) 0.18195 (13) 0.0488 (4)
O5 0.6277 (2) 0.49724 (18) 0.29763 (11) 0.0394 (4)
C1 1.0365 (3) 0.1721 (3) 0.31538 (14) 0.0320 (5)
C2 1.0262 (3) 0.3008 (3) 0.37105 (15) 0.0335 (5)
C3 1.1149 (3) 0.3354 (3) 0.46378 (15) 0.0393 (5)
H3 1.1147 0.4263 0.4981 0.047*
C4 1.1993 (3) 0.2377 (3) 0.50247 (16) 0.0428 (6)
H4A 1.2587 0.2634 0.5628 0.051*
C5 1.1996 (3) 0.0961 (3) 0.45323 (15) 0.0375 (5)
C6 1.2751 (3) −0.0119 (3) 0.49719 (17) 0.0460 (6)
H6 1.3333 0.0135 0.5579 0.055*
C7 1.2650 (3) −0.1525 (3) 0.45303 (18) 0.0498 (6)
H7 1.3184 −0.2214 0.4823 0.060*
C8 1.1733 (3) −0.1919 (3) 0.36306 (18) 0.0495 (6)
H8 1.1608 −0.2899 0.3338 0.059*
C9 1.1014 (3) −0.0885 (3) 0.31728 (16) 0.0418 (5)
H9 1.0424 −0.1174 0.2570 0.050*
C10 1.1148 (3) 0.0606 (3) 0.35915 (14) 0.0332 (5)
C11 0.9751 (3) 0.1582 (2) 0.21387 (14) 0.0315 (5)
C12 1.0689 (3) 0.0947 (3) 0.14163 (16) 0.0453 (6)
H12A 1.0006 −0.0071 0.1172 0.068*
H12B 1.1788 0.0882 0.1710 0.068*
H12C 1.0870 0.1627 0.0907 0.068*
C13 0.6477 (3) 0.2374 (2) 0.07614 (14) 0.0318 (5)
C14 0.5526 (3) 0.2159 (2) −0.02017 (14) 0.0315 (4)
C15 0.5965 (3) 0.1316 (3) −0.09313 (15) 0.0371 (5)
H15 0.6872 0.0860 −0.0827 0.045*
C16 0.5042 (3) 0.1159 (3) −0.18146 (16) 0.0432 (6)
H16 0.5321 0.0605 −0.2317 0.052*
C17 0.3698 (3) 0.1840 (3) −0.19387 (16) 0.0472 (6)
H17 0.3078 0.1730 −0.2536 0.057*
C18 0.4158 (3) 0.2800 (3) −0.03938 (16) 0.0401 (5)
H18 0.3858 0.3366 0.0095 0.048*
C19 1.0283 (4) 0.5696 (4) 0.1364 (2) 0.0628 (8)
H19A 1.1219 0.5587 0.1803 0.094*
H19B 1.0570 0.6724 0.1141 0.094*
H19C 1.0095 0.4941 0.0837 0.094*
C20 0.4631 (4) 0.4778 (4) 0.3286 (3) 0.0748 (10)
H20A 0.3755 0.4375 0.2764 0.112*
H20B 0.4528 0.5764 0.3529 0.112*
H20C 0.4486 0.4061 0.3778 0.112*
H4 0.814 (4) 0.600 (3) 0.159 (2) 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
V1 0.0342 (2) 0.0342 (2) 0.0302 (2) 0.01284 (16) 0.00180 (14) −0.00170 (14)
N1 0.0326 (9) 0.0343 (10) 0.0267 (8) 0.0111 (8) −0.0022 (7) −0.0020 (7)
N2 0.0369 (10) 0.0382 (10) 0.0261 (8) 0.0144 (8) −0.0017 (7) −0.0019 (7)
N3 0.0436 (12) 0.0538 (13) 0.0434 (11) 0.0169 (10) −0.0063 (9) 0.0081 (9)
O1 0.0416 (9) 0.0370 (9) 0.0399 (8) 0.0169 (7) −0.0064 (7) −0.0082 (7)
O2 0.0356 (8) 0.0473 (10) 0.0319 (8) 0.0179 (7) 0.0009 (6) −0.0026 (7)
O3 0.0529 (10) 0.0412 (10) 0.0363 (8) 0.0113 (8) 0.0070 (7) 0.0025 (7)
O4 0.0403 (10) 0.0485 (11) 0.0640 (11) 0.0180 (8) 0.0131 (8) 0.0204 (8)
O5 0.0347 (8) 0.0400 (9) 0.0461 (9) 0.0141 (7) 0.0082 (7) −0.0033 (7)
C1 0.0280 (11) 0.0370 (12) 0.0307 (10) 0.0102 (9) −0.0004 (8) −0.0004 (9)
C2 0.0289 (11) 0.0371 (12) 0.0341 (11) 0.0097 (9) 0.0010 (8) −0.0013 (9)
C3 0.0355 (12) 0.0458 (14) 0.0349 (11) 0.0113 (10) −0.0010 (9) −0.0093 (10)
C4 0.0364 (12) 0.0565 (16) 0.0313 (11) 0.0096 (11) −0.0050 (9) −0.0038 (10)
C5 0.0288 (11) 0.0479 (14) 0.0342 (11) 0.0083 (10) 0.0002 (9) 0.0051 (10)
C6 0.0382 (13) 0.0586 (17) 0.0407 (13) 0.0137 (12) −0.0033 (10) 0.0101 (11)
C7 0.0482 (15) 0.0541 (16) 0.0521 (15) 0.0223 (13) 0.0008 (12) 0.0165 (12)
C8 0.0559 (16) 0.0446 (15) 0.0523 (15) 0.0216 (12) 0.0038 (12) 0.0051 (11)
C9 0.0427 (13) 0.0447 (14) 0.0393 (12) 0.0168 (11) −0.0017 (10) 0.0000 (10)
C10 0.0262 (10) 0.0400 (12) 0.0335 (11) 0.0096 (9) 0.0024 (8) 0.0027 (9)
C11 0.0316 (11) 0.0319 (11) 0.0313 (10) 0.0110 (9) 0.0003 (8) −0.0018 (8)
C12 0.0479 (14) 0.0608 (16) 0.0358 (12) 0.0306 (13) 0.0049 (10) −0.0019 (11)
C13 0.0337 (11) 0.0312 (11) 0.0294 (10) 0.0080 (9) 0.0004 (8) 0.0013 (8)
C14 0.0313 (11) 0.0289 (11) 0.0318 (10) 0.0043 (9) 0.0009 (8) 0.0045 (8)
C15 0.0370 (12) 0.0378 (13) 0.0356 (11) 0.0095 (10) 0.0026 (9) 0.0006 (9)
C16 0.0467 (14) 0.0448 (14) 0.0337 (12) 0.0062 (11) 0.0014 (10) −0.0018 (10)
C17 0.0488 (15) 0.0519 (16) 0.0341 (12) 0.0053 (12) −0.0068 (11) 0.0067 (11)
C18 0.0432 (13) 0.0436 (14) 0.0351 (12) 0.0165 (11) −0.0002 (10) 0.0029 (10)
C19 0.0587 (18) 0.0611 (19) 0.0673 (19) 0.0090 (14) 0.0232 (14) 0.0018 (14)
C20 0.0444 (16) 0.069 (2) 0.117 (3) 0.0212 (15) 0.0286 (17) −0.0109 (19)

Geometric parameters (Å, °)

V1—O3 1.5826 (17) C6—H6 0.9300
V1—O5 1.7796 (15) C7—C8 1.396 (3)
V1—O1 1.8555 (15) C7—H7 0.9300
V1—O2 1.9716 (15) C8—C9 1.368 (3)
V1—N1 2.1143 (17) C8—H8 0.9300
V1—O4 2.3162 (18) C9—C10 1.409 (3)
N1—C11 1.299 (3) C9—H9 0.9300
N1—N2 1.399 (2) C11—C12 1.508 (3)
N2—C13 1.301 (3) C12—H12A 0.9600
N3—C17 1.334 (3) C12—H12B 0.9600
N3—C18 1.340 (3) C12—H12C 0.9600
O1—C2 1.337 (3) C13—C14 1.482 (3)
O2—C13 1.302 (2) C14—C18 1.382 (3)
O4—C19 1.403 (3) C14—C15 1.384 (3)
O4—H4 0.843 (10) C15—C16 1.379 (3)
O5—C20 1.406 (3) C15—H15 0.9300
C1—C2 1.394 (3) C16—C17 1.377 (3)
C1—C10 1.444 (3) C16—H16 0.9300
C1—C11 1.469 (3) C17—H17 0.9300
C2—C3 1.419 (3) C18—H18 0.9300
C3—C4 1.346 (3) C19—H19A 0.9600
C3—H3 0.9300 C19—H19B 0.9600
C4—C5 1.421 (3) C19—H19C 0.9600
C4—H4A 0.9300 C20—H20A 0.9600
C5—C6 1.407 (3) C20—H20B 0.9600
C5—C10 1.425 (3) C20—H20C 0.9600
C6—C7 1.360 (4)
O3—V1—O5 101.71 (8) C9—C8—H8 119.5
O3—V1—O1 100.85 (8) C7—C8—H8 119.5
O5—V1—O1 105.37 (7) C8—C9—C10 121.6 (2)
O3—V1—O2 99.22 (8) C8—C9—H9 119.2
O5—V1—O2 91.49 (7) C10—C9—H9 119.2
O1—V1—O2 150.41 (7) C9—C10—C5 116.9 (2)
O3—V1—N1 95.53 (8) C9—C10—C1 123.88 (19)
O5—V1—N1 159.33 (7) C5—C10—C1 119.1 (2)
O1—V1—N1 82.18 (7) N1—C11—C1 119.21 (18)
O2—V1—N1 74.42 (6) N1—C11—C12 119.49 (18)
O3—V1—O4 177.71 (7) C1—C11—C12 121.08 (18)
O5—V1—O4 80.30 (7) C11—C12—H12A 109.5
O1—V1—O4 79.58 (7) C11—C12—H12B 109.5
O2—V1—O4 79.56 (7) H12A—C12—H12B 109.5
N1—V1—O4 82.28 (7) C11—C12—H12C 109.5
C11—N1—N2 117.13 (17) H12A—C12—H12C 109.5
C11—N1—V1 127.25 (13) H12B—C12—H12C 109.5
N2—N1—V1 115.38 (12) N2—C13—O2 124.12 (18)
C13—N2—N1 107.79 (16) N2—C13—C14 118.44 (18)
C17—N3—C18 117.3 (2) O2—C13—C14 117.43 (18)
C2—O1—V1 125.76 (14) C18—C14—C15 117.97 (19)
C13—O2—V1 116.38 (13) C18—C14—C13 120.36 (19)
C19—O4—V1 134.37 (17) C15—C14—C13 121.66 (19)
C19—O4—H4 110 (2) C16—C15—C14 119.2 (2)
V1—O4—H4 112 (2) C16—C15—H15 120.4
C20—O5—V1 127.10 (17) C14—C15—H15 120.4
C2—C1—C10 118.48 (18) C17—C16—C15 118.7 (2)
C2—C1—C11 119.09 (19) C17—C16—H16 120.7
C10—C1—C11 122.37 (18) C15—C16—H16 120.7
O1—C2—C1 122.17 (18) N3—C17—C16 123.3 (2)
O1—C2—C3 117.00 (19) N3—C17—H17 118.3
C1—C2—C3 120.7 (2) C16—C17—H17 118.3
C4—C3—C2 120.5 (2) N3—C18—C14 123.5 (2)
C4—C3—H3 119.8 N3—C18—H18 118.2
C2—C3—H3 119.8 C14—C18—H18 118.2
C3—C4—C5 121.5 (2) O4—C19—H19A 109.5
C3—C4—H4A 119.2 O4—C19—H19B 109.5
C5—C4—H4A 119.2 H19A—C19—H19B 109.5
C6—C5—C4 121.2 (2) O4—C19—H19C 109.5
C6—C5—C10 119.8 (2) H19A—C19—H19C 109.5
C4—C5—C10 119.0 (2) H19B—C19—H19C 109.5
C7—C6—C5 121.5 (2) O5—C20—H20A 109.5
C7—C6—H6 119.2 O5—C20—H20B 109.5
C5—C6—H6 119.2 H20A—C20—H20B 109.5
C6—C7—C8 119.0 (2) O5—C20—H20C 109.5
C6—C7—H7 120.5 H20A—C20—H20C 109.5
C8—C7—H7 120.5 H20B—C20—H20C 109.5
C9—C8—C7 121.0 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O4—H4···N3i 0.84 (1) 1.90 (1) 2.734 (3) 173 (3)

Symmetry codes: (i) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6424).

References

  1. Bruker (1998). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Deng, Z.-P., Gao, S., Huo, L.-H. & Zhao, H. (2005). Acta Cryst. E61, m2214–m2216. [DOI] [PubMed]
  3. Gao, S., Huo, L.-H., Deng, Z.-P. & Zhao, H. (2005). Acta Cryst. E61, m978–m980. [DOI] [PubMed]
  4. Huo, L.-H., Gao, S., Liu, J.-W., Zhao, H. & Ng, S. W. (2004). Acta Cryst. E60, m606–m608.
  5. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Wang, C.-Y. (2009). J. Coord. Chem. 62, 2860–2868.
  8. Wang, C. Y. & Ye, J. Y. (2011). Russ. J. Coord. Chem. 37, 235–241.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811039766/hb6424sup1.cif

e-67-m1475-sup1.cif (19.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811039766/hb6424Isup2.hkl

e-67-m1475-Isup2.hkl (201.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES