Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 5;67(Pt 11):m1497. doi: 10.1107/S1600536811040086

Dichlorido[2-diphenyl­phosphanyl-N-(pyridin-3-ylmeth­yl)benzyl­idenamine-κ2 P,N]platinum(II)

Haleden Chiririwa a,*, Reinout Meijboom a
PMCID: PMC3246929  PMID: 22219749

Abstract

The title compound, [PtCl2(C25H21N2P)], is a PtII complex with an NPCl2 coordination sphere in which the metal is coordinated to the imino N and phosphane P atoms of the ligand and to two chloride ions. The PtII atom is in a distorted square-planar environment and is bound to the ligand via the P and amine N atoms in a cis fashion, with the chlorine atoms located at the two remaining sites.

Related literature

For related structures with related ligands, see: Chiririwa et al. (2011); Ghilardi et al. (1992); Sanchez et al. (1998, 2001). For Pt—N and Pt—P bond lengths in imino­phosphane platinum(II) complexes, see: Ankersmit et al. (1996). graphic file with name e-67-m1497-scheme1.jpg

Experimental

Crystal data

  • [PtCl2(C25H21N2P)]

  • M r = 646.40

  • Triclinic, Inline graphic

  • a = 9.9684 (14) Å

  • b = 10.4129 (15) Å

  • c = 12.526 (3) Å

  • α = 97.687 (5)°

  • β = 98.363 (5)°

  • γ = 114.499 (3)°

  • V = 1143.1 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 6.46 mm−1

  • T = 173 K

  • 0.07 × 0.06 × 0.04 mm

Data collection

  • Bruker Kappa DUO APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007) T min = 0.671, T max = 0.802

  • 16090 measured reflections

  • 4994 independent reflections

  • 4177 reflections with I > 2σ(I)

  • R int = 0.058

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.062

  • S = 1.01

  • 4994 reflections

  • 280 parameters

  • H-atom parameters constrained

  • Δρmax = 0.87 e Å−3

  • Δρmin = −1.02 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811040086/go2028sup1.cif

e-67-m1497-sup1.cif (29.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811040086/go2028Isup2.hkl

e-67-m1497-Isup2.hkl (244.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Pt1—N1 2.040 (4)
Pt1—P1 2.1999 (13)
Pt1—Cl2 2.2840 (12)
Pt1—Cl1 2.3806 (14)

Acknowledgments

Financial assistance from the South African National Research Foundation (SA NRF), the Research Fund of the University of Johannesburg and SASOL is gratefully acknowledged.

supplementary crystallographic information

Comment

In recent years, platinum complexes with iminophosphane ligands of the N-[(2-diphenylphosphanyl)benzylidene]amine type have been used as catalysts (or catalyst precursors) in a variety organic reactions. To the best of our knowledge, no structures have been determined so far, concerning the free ligand -(2(diphenylphosphanyl) benzylidene) (phenyl) methanamine, where the potentially bidentate ligand is chelated to the metal through the phosphorus and imino nitrogen atoms (Fig. 1). The platinum is in a square-planar environment and it is bound to the ligand using a k2P,N interaction in a cis fashion, with the chlorides located at the two remaining sites. However the square-planar geometry of the platinum environment is distorted with the angles being less than 180°, N(1)-Pt(1)-Cl(2) and P(1)-Pt(1)-Cl(1) of 176.70 (12)° and 178.20 (5)°, respectively. The average Pt-N and Pt-P bond lengths of 2.040 (4) and 2.1999 (13) Å, respectively are in the range expected for iminophosphane platinum(II) complexes, Ankersmit et al.,1996. The torsion angle Pt-P-C(9)-C(8) = -36.5 (4)° indicates that the =CHC6H4- unit lies below the PtCl2(P,N) plane. Selected bond lengths are given in Table 1.

Experimental

To a dry CH2Cl2 (10 ml) solution of the precursor [Pt(COD)Cl2] was added an equimolar amount of (2(diphenylphosphanyl) benzylidene) (phenyl)methanamine in CH2Cl2 (10 ml) solution, and the reaction was stirred at room temperature for 1 hr. The yellow solution was concentrated under reduced pressure to half volume and the addition of ca 10 ml hexane caused precipitation of the complex, which was filtered off, washed with Et2O and dried under vacuum for 4 hrs. Yellow crystals used in the X-ray diffraction studies were grown by slow evaporation of a solution of the compound in a CH2Cl2-hexane solution at room temperature.

Refinement

The methyl, methine and aromatic H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.95 Å for aromatic, C—H = 0.99 Å for iPr CH, C—H = 0.95 Å for CH and C—H = 0.98 for Me groups.

Figures

Fig. 1.

Fig. 1.

View of (I) (50% probability displacement ellipsoids).

Crystal data

[PtCl2(C25H21N2P)] Z = 2
Mr = 646.40 F(000) = 624
Triclinic, P1 Dx = 1.878 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.9684 (14) Å Cell parameters from 16090 reflections
b = 10.4129 (15) Å θ = 2.2–27.1°
c = 12.526 (3) Å µ = 6.46 mm1
α = 97.687 (5)° T = 173 K
β = 98.363 (5)° Block, colourless
γ = 114.499 (3)° 0.07 × 0.06 × 0.04 mm
V = 1143.1 (4) Å3

Data collection

Bruker Kappa DUO APEXII diffractometer 4994 independent reflections
Radiation source: fine-focus sealed tube 4177 reflections with I > 2σ(I)
graphite Rint = 0.058
0.5° φ scans and ω θmax = 27.1°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2007) h = −12→7
Tmin = 0.671, Tmax = 0.802 k = −11→13
16090 measured reflections l = −16→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0217P)2] where P = (Fo2 + 2Fc2)/3
4994 reflections (Δ/σ)max = 0.001
280 parameters Δρmax = 0.87 e Å3
0 restraints Δρmin = −1.02 e Å3

Special details

Experimental. Half sphere of data collected using SAINT strategy (Bruker, 2006). Crystal to detector distance = 50mm; combination of φ and ω scans of 0.5°, 10s per °, 2 iterations.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Pt1 0.30212 (2) 0.26883 (2) 0.257890 (16) 0.02056 (6)
Cl1 0.43855 (18) 0.18884 (16) 0.38298 (11) 0.0407 (4)
Cl2 0.28642 (15) 0.09332 (13) 0.11921 (11) 0.0312 (3)
P1 0.18282 (14) 0.34845 (13) 0.14220 (10) 0.0191 (3)
N1 0.3050 (4) 0.4171 (4) 0.3836 (3) 0.0250 (9)
N2 −0.1190 (6) 0.2951 (6) 0.5265 (5) 0.0499 (14)
C1 0.1057 (6) 0.2892 (6) 0.4810 (4) 0.0285 (12)
C2 0.0286 (7) 0.3573 (6) 0.5293 (5) 0.0407 (15)
H2 0.0854 0.4555 0.5671 0.049*
C3 −0.1960 (7) 0.1592 (7) 0.4729 (5) 0.0488 (17)
H3 −0.3016 0.1133 0.4693 0.059*
C4 −0.1333 (7) 0.0797 (6) 0.4219 (5) 0.0499 (17)
H4 −0.1937 −0.0186 0.3854 0.060*
C5 0.0210 (7) 0.1468 (6) 0.4251 (5) 0.0445 (16)
H5 0.0675 0.0955 0.3893 0.053*
C6 0.2735 (6) 0.3698 (6) 0.4900 (4) 0.0289 (12)
H7A 0.3221 0.3067 0.5062 0.035*
H7B 0.3173 0.4557 0.5517 0.035*
C7 0.3209 (6) 0.5449 (5) 0.3819 (4) 0.0273 (12)
H7 0.3236 0.6003 0.4496 0.033*
C8 0.3357 (5) 0.6170 (5) 0.2876 (4) 0.0212 (11)
C9 0.2770 (5) 0.5450 (5) 0.1774 (4) 0.0212 (11)
C10 0.2852 (6) 0.6262 (5) 0.0963 (4) 0.0276 (12)
H10 0.2437 0.5783 0.0209 0.033*
C11 0.3523 (6) 0.7740 (5) 0.1242 (4) 0.0289 (12)
H11 0.3602 0.8277 0.0678 0.035*
C12 0.4088 (6) 0.8461 (5) 0.2341 (4) 0.0299 (12)
H12 0.4527 0.9487 0.2529 0.036*
C13 0.4012 (6) 0.7687 (5) 0.3156 (4) 0.0273 (12)
H13 0.4401 0.8178 0.3910 0.033*
C14 0.1730 (6) 0.3018 (5) −0.0046 (4) 0.0214 (11)
C15 0.3084 (6) 0.3303 (5) −0.0391 (4) 0.0290 (12)
H15 0.4012 0.3665 0.0138 0.035*
C16 0.3057 (7) 0.3050 (6) −0.1516 (5) 0.0365 (14)
H16 0.3972 0.3256 −0.1755 0.044*
C17 0.1718 (7) 0.2506 (6) −0.2277 (5) 0.0404 (15)
H17 0.1715 0.2347 −0.3042 0.049*
C18 0.0362 (7) 0.2182 (6) −0.1947 (5) 0.0386 (14)
H18 −0.0570 0.1768 −0.2478 0.046*
C19 0.0400 (6) 0.2477 (5) −0.0823 (4) 0.0289 (12)
H19 −0.0514 0.2300 −0.0590 0.035*
C20 −0.0091 (5) 0.2964 (5) 0.1564 (4) 0.0217 (11)
C21 −0.0639 (6) 0.3960 (5) 0.1868 (4) 0.0291 (12)
H21 0.0001 0.4968 0.2001 0.035*
C22 −0.2132 (6) 0.3464 (6) 0.1973 (5) 0.0371 (14)
H22 −0.2504 0.4143 0.2184 0.045*
C23 −0.3071 (6) 0.2025 (6) 0.1780 (5) 0.0387 (14)
H23 −0.4089 0.1711 0.1851 0.046*
C24 −0.2551 (6) 0.1018 (6) 0.1481 (5) 0.0358 (14)
H24 −0.3214 0.0016 0.1340 0.043*
C25 −0.1056 (6) 0.1471 (5) 0.1384 (4) 0.0304 (12)
H25 −0.0689 0.0781 0.1199 0.036*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pt1 0.02045 (11) 0.02191 (10) 0.01956 (11) 0.01090 (8) 0.00208 (8) 0.00264 (7)
Cl1 0.0548 (10) 0.0505 (9) 0.0257 (7) 0.0386 (8) −0.0057 (7) 0.0005 (7)
Cl2 0.0376 (8) 0.0252 (6) 0.0298 (7) 0.0181 (6) −0.0007 (6) −0.0025 (6)
P1 0.0175 (7) 0.0197 (6) 0.0200 (7) 0.0081 (5) 0.0040 (6) 0.0044 (5)
N1 0.020 (2) 0.029 (2) 0.025 (2) 0.011 (2) 0.002 (2) 0.0067 (19)
N2 0.044 (3) 0.048 (3) 0.064 (4) 0.025 (3) 0.020 (3) 0.010 (3)
C1 0.043 (3) 0.033 (3) 0.015 (3) 0.020 (3) 0.010 (3) 0.014 (2)
C2 0.054 (4) 0.038 (3) 0.037 (3) 0.027 (3) 0.012 (3) 0.006 (3)
C3 0.036 (4) 0.062 (4) 0.057 (4) 0.025 (3) 0.021 (3) 0.021 (4)
C4 0.049 (4) 0.036 (3) 0.057 (4) 0.010 (3) 0.021 (4) 0.004 (3)
C5 0.048 (4) 0.037 (3) 0.049 (4) 0.018 (3) 0.020 (3) 0.001 (3)
C6 0.033 (3) 0.036 (3) 0.024 (3) 0.019 (3) 0.009 (3) 0.011 (2)
C7 0.027 (3) 0.026 (3) 0.024 (3) 0.010 (2) 0.004 (2) −0.001 (2)
C8 0.014 (3) 0.029 (3) 0.019 (3) 0.010 (2) 0.003 (2) 0.005 (2)
C9 0.014 (3) 0.022 (2) 0.025 (3) 0.007 (2) 0.003 (2) 0.001 (2)
C10 0.029 (3) 0.029 (3) 0.025 (3) 0.013 (2) 0.006 (2) 0.008 (2)
C11 0.027 (3) 0.030 (3) 0.032 (3) 0.013 (2) 0.008 (3) 0.015 (2)
C12 0.031 (3) 0.019 (3) 0.036 (3) 0.009 (2) 0.007 (3) 0.004 (2)
C13 0.030 (3) 0.021 (3) 0.030 (3) 0.008 (2) 0.014 (3) 0.005 (2)
C14 0.028 (3) 0.021 (2) 0.019 (3) 0.014 (2) 0.006 (2) 0.006 (2)
C15 0.029 (3) 0.037 (3) 0.024 (3) 0.016 (3) 0.009 (3) 0.008 (2)
C16 0.040 (4) 0.045 (3) 0.036 (3) 0.026 (3) 0.017 (3) 0.013 (3)
C17 0.068 (5) 0.046 (3) 0.020 (3) 0.036 (3) 0.013 (3) 0.006 (3)
C18 0.046 (4) 0.039 (3) 0.023 (3) 0.017 (3) −0.008 (3) −0.001 (3)
C19 0.025 (3) 0.037 (3) 0.022 (3) 0.014 (3) −0.001 (2) 0.002 (2)
C20 0.023 (3) 0.025 (3) 0.016 (3) 0.011 (2) 0.003 (2) 0.004 (2)
C21 0.032 (3) 0.027 (3) 0.029 (3) 0.013 (2) 0.009 (3) 0.006 (2)
C22 0.025 (3) 0.052 (4) 0.041 (4) 0.023 (3) 0.013 (3) 0.007 (3)
C23 0.023 (3) 0.053 (4) 0.037 (4) 0.012 (3) 0.011 (3) 0.012 (3)
C24 0.026 (3) 0.033 (3) 0.045 (4) 0.007 (3) 0.011 (3) 0.018 (3)
C25 0.025 (3) 0.027 (3) 0.036 (3) 0.010 (2) 0.006 (3) 0.006 (2)

Geometric parameters (Å, °)

Pt1—N1 2.040 (4) C10—H10 0.9500
Pt1—P1 2.1999 (13) C11—C12 1.386 (7)
Pt1—Cl2 2.2840 (12) C11—H11 0.9500
Pt1—Cl1 2.3806 (14) C12—C13 1.375 (7)
P1—C20 1.803 (5) C12—H12 0.9500
P1—C14 1.815 (5) C13—H13 0.9500
P1—C9 1.819 (5) C14—C19 1.372 (7)
N1—C7 1.276 (6) C14—C15 1.404 (6)
N1—C6 1.512 (6) C15—C16 1.392 (7)
N2—C3 1.318 (8) C15—H15 0.9500
N2—C2 1.332 (7) C16—C17 1.367 (8)
C1—C5 1.384 (7) C16—H16 0.9500
C1—C2 1.390 (7) C17—C18 1.391 (8)
C1—C6 1.507 (7) C17—H17 0.9500
C2—H2 0.9500 C18—C19 1.392 (7)
C3—C4 1.374 (8) C18—H18 0.9500
C3—H3 0.9500 C19—H19 0.9500
C4—C5 1.392 (8) C20—C21 1.393 (6)
C4—H4 0.9500 C20—C25 1.414 (7)
C5—H5 0.9500 C21—C22 1.392 (7)
C6—H7A 0.9900 C21—H21 0.9500
C6—H7B 0.9900 C22—C23 1.362 (8)
C7—C8 1.475 (7) C22—H22 0.9500
C7—H7 0.9500 C23—C24 1.383 (7)
C8—C9 1.390 (6) C23—H23 0.9500
C8—C13 1.405 (6) C24—C25 1.393 (7)
C9—C10 1.396 (7) C24—H24 0.9500
C10—C11 1.369 (7) C25—H25 0.9500
N1—Pt1—P1 88.47 (12) C11—C10—H10 119.6
N1—Pt1—Cl2 176.70 (12) C9—C10—H10 119.6
P1—Pt1—Cl2 91.76 (5) C10—C11—C12 120.5 (5)
N1—Pt1—Cl1 91.27 (12) C10—C11—H11 119.7
P1—Pt1—Cl1 178.20 (5) C12—C11—H11 119.7
Cl2—Pt1—Cl1 88.60 (5) C13—C12—C11 119.8 (5)
C20—P1—C14 106.2 (2) C13—C12—H12 120.1
C20—P1—C9 106.1 (2) C11—C12—H12 120.1
C14—P1—C9 104.7 (2) C12—C13—C8 120.0 (5)
C20—P1—Pt1 111.62 (16) C12—C13—H13 120.0
C14—P1—Pt1 119.12 (15) C8—C13—H13 120.0
C9—P1—Pt1 108.20 (17) C19—C14—C15 119.4 (5)
C7—N1—C6 114.4 (4) C19—C14—P1 122.4 (4)
C7—N1—Pt1 127.8 (4) C15—C14—P1 118.2 (4)
C6—N1—Pt1 117.6 (3) C16—C15—C14 119.4 (5)
C3—N2—C2 116.7 (5) C16—C15—H15 120.3
C5—C1—C2 116.9 (5) C14—C15—H15 120.3
C5—C1—C6 122.7 (5) C17—C16—C15 120.3 (5)
C2—C1—C6 120.4 (5) C17—C16—H16 119.9
N2—C2—C1 124.8 (6) C15—C16—H16 119.9
N2—C2—H2 117.6 C16—C17—C18 121.0 (5)
C1—C2—H2 117.6 C16—C17—H17 119.5
N2—C3—C4 124.2 (6) C18—C17—H17 119.5
N2—C3—H3 117.9 C17—C18—C19 118.6 (5)
C4—C3—H3 117.9 C17—C18—H18 120.7
C3—C4—C5 118.3 (6) C19—C18—H18 120.7
C3—C4—H4 120.8 C14—C19—C18 121.3 (5)
C5—C4—H4 120.8 C14—C19—H19 119.3
C1—C5—C4 119.1 (5) C18—C19—H19 119.3
C1—C5—H5 120.4 C21—C20—C25 119.4 (5)
C4—C5—H5 120.4 C21—C20—P1 123.1 (4)
C1—C6—N1 110.5 (4) C25—C20—P1 117.5 (3)
C1—C6—H7A 109.6 C22—C21—C20 119.4 (5)
N1—C6—H7A 109.6 C22—C21—H21 120.3
C1—C6—H7B 109.6 C20—C21—H21 120.3
N1—C6—H7B 109.6 C23—C22—C21 121.3 (5)
H7A—C6—H7B 108.1 C23—C22—H22 119.3
N1—C7—C8 127.9 (4) C21—C22—H22 119.3
N1—C7—H7 116.1 C22—C23—C24 120.3 (5)
C8—C7—H7 116.1 C22—C23—H23 119.8
C9—C8—C13 120.0 (5) C24—C23—H23 119.8
C9—C8—C7 124.4 (4) C23—C24—C25 120.2 (5)
C13—C8—C7 115.3 (4) C23—C24—H24 119.9
C8—C9—C10 118.8 (4) C25—C24—H24 119.9
C8—C9—P1 119.8 (4) C24—C25—C20 119.5 (4)
C10—C9—P1 121.4 (4) C24—C25—H25 120.3
C11—C10—C9 120.8 (5) C20—C25—H25 120.3
N1—Pt1—P1—C20 −71.2 (2) C8—C9—C10—C11 1.2 (7)
Cl2—Pt1—P1—C20 105.47 (17) P1—C9—C10—C11 178.0 (4)
N1—Pt1—P1—C14 164.4 (2) C9—C10—C11—C12 −2.3 (8)
Cl2—Pt1—P1—C14 −18.93 (19) C10—C11—C12—C13 1.8 (8)
N1—Pt1—P1—C9 45.12 (19) C11—C12—C13—C8 −0.2 (7)
Cl2—Pt1—P1—C9 −138.17 (16) C9—C8—C13—C12 −0.8 (7)
P1—Pt1—N1—C7 −36.2 (4) C7—C8—C13—C12 −174.6 (4)
Cl1—Pt1—N1—C7 142.0 (4) C20—P1—C14—C19 4.1 (5)
P1—Pt1—N1—C6 138.9 (3) C9—P1—C14—C19 −107.9 (4)
Cl1—Pt1—N1—C6 −42.8 (3) Pt1—P1—C14—C19 131.1 (4)
C3—N2—C2—C1 −0.5 (9) C20—P1—C14—C15 −179.6 (4)
C5—C1—C2—N2 0.8 (9) C9—P1—C14—C15 68.4 (4)
C6—C1—C2—N2 −179.5 (5) Pt1—P1—C14—C15 −52.6 (4)
C2—N2—C3—C4 0.7 (10) C19—C14—C15—C16 0.9 (7)
N2—C3—C4—C5 −1.1 (10) P1—C14—C15—C16 −175.6 (4)
C2—C1—C5—C4 −1.1 (8) C14—C15—C16—C17 −1.1 (8)
C6—C1—C5—C4 179.2 (5) C15—C16—C17—C18 −0.6 (8)
C3—C4—C5—C1 1.3 (9) C16—C17—C18—C19 2.5 (8)
C5—C1—C6—N1 77.7 (6) C15—C14—C19—C18 1.1 (7)
C2—C1—C6—N1 −102.0 (5) P1—C14—C19—C18 177.4 (4)
C7—N1—C6—C1 93.8 (5) C17—C18—C19—C14 −2.8 (8)
Pt1—N1—C6—C1 −82.0 (4) C14—P1—C20—C21 −109.9 (4)
C6—N1—C7—C8 −172.7 (5) C9—P1—C20—C21 1.2 (5)
Pt1—N1—C7—C8 2.5 (8) Pt1—P1—C20—C21 118.8 (4)
N1—C7—C8—C9 26.9 (8) C14—P1—C20—C25 71.8 (4)
N1—C7—C8—C13 −159.6 (5) C9—P1—C20—C25 −177.1 (4)
C13—C8—C9—C10 0.3 (7) Pt1—P1—C20—C25 −59.5 (4)
C7—C8—C9—C10 173.6 (4) C25—C20—C21—C22 −0.9 (8)
C13—C8—C9—P1 −176.5 (3) P1—C20—C21—C22 −179.1 (4)
C7—C8—C9—P1 −3.3 (6) C20—C21—C22—C23 −0.4 (8)
C20—P1—C9—C8 83.4 (4) C21—C22—C23—C24 0.5 (9)
C14—P1—C9—C8 −164.5 (4) C22—C23—C24—C25 0.6 (9)
Pt1—P1—C9—C8 −36.5 (4) C23—C24—C25—C20 −1.8 (8)
C20—P1—C9—C10 −93.4 (4) C21—C20—C25—C24 1.9 (8)
C14—P1—C9—C10 18.7 (4) P1—C20—C25—C24 −179.7 (4)
Pt1—P1—C9—C10 146.7 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GO2028).

References

  1. Ankersmit, H. A., Loken, B. H., Kooijman, H., Spek, A. L., Vrieze, K. & van Koten, G. (1996). Inorg. Chim. Acta, 252, 141–155.
  2. Barbour, L. J. (2001). J. Supramol. Chem 1, 189-191.
  3. Bruker (2007). APEX2, SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Chiririwa, H., Meijboom, R. & Omondi, B. (2011). Acta Cryst. E67, m608–m609. [DOI] [PMC free article] [PubMed]
  5. Ghilardi, C. A., Midollini, S., Moneti, S., Orlandini, A. & Scapacci, G. (1992). J. Chem. Soc. Dalton Trans pp. 3371–3376.
  6. Sanchez, G., Momblona, F., Perez, J. & Lopez, G. (2001). Transition Met. Chem. 26, 100–104.
  7. Sanchez, G., Serrano, J. L., Ruiz, F. & Lopez, G. (1998). J. Fluorine Chem. 91, 165–169.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811040086/go2028sup1.cif

e-67-m1497-sup1.cif (29.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811040086/go2028Isup2.hkl

e-67-m1497-Isup2.hkl (244.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES