Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 12;67(Pt 11):m1516–m1517. doi: 10.1107/S1600536811038657

Bis[2,2′-(2-amino­ethyl­imino)­di(ethyl­ammonium)] di-μ-sulfido-bis[disulfido­stannate(IV)]

Emma Karey a, Kimberly A Rosmus b, Jennifer A Aitken b, Joseph MacNeil a,*
PMCID: PMC3246945  PMID: 22219765

Abstract

The asymmetric unit of the title compound, (C6H20N4)2[Sn2S6], comprises half of a [Sn2S6]4− anion and a diprotonated tris­(2-amino­eth­yl)amine cation. The anion lies on an inversion center, while the atoms of the cation occupy general positions. An intra­molecular N—H⋯N hydrogen bond is observed in the cation. In the crystal, strong N—H⋯S hydrogen bonding between the terminal sulfur atoms of the anion and the protonated amine N atoms of the cations result in a three-dimensional network.

Related literature

For synthetic conditions and the structure of the hydrated form of this complex, see: Näther et al. (2003). For solvothermal syntheses of compounds with [Sn2S6]4− anions, see: Behrens et al. (2003); Jia et al. (2005); Jiang et al. (1998a ); Li et al. (1997). For other thio­stannate anions, see: Jiang et al. (1998b ). For a review article covering related compounds, see: Zhou et al. (2009). graphic file with name e-67-m1516-scheme1.jpg

Experimental

Crystal data

  • (C6H20N4)2[Sn2S6]

  • M r = 363.13

  • Monoclinic, Inline graphic

  • a = 9.9280 (2) Å

  • b = 14.8845 (3) Å

  • c = 10.2498 (2) Å

  • β = 115.758 (1)°

  • V = 1364.15 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.31 mm−1

  • T = 296 K

  • 0.61 × 0.57 × 0.39 mm

Data collection

  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002) T min = 0.334, T max = 0.467

  • 25432 measured reflections

  • 4907 independent reflections

  • 4460 reflections with I > 2σ(I)

  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.021

  • wR(F 2) = 0.058

  • S = 1.04

  • 4907 reflections

  • 132 parameters

  • H-atom parameters constrained

  • Δρmax = 1.22 e Å−3

  • Δρmin = −0.51 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalMaker (Palmer, 2010); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536811038657/si2373sup1.cif

e-67-m1516-sup1.cif (16.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811038657/si2373Isup2.hkl

e-67-m1516-Isup2.hkl (240.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Sn1—S1 2.3307 (4)
Sn1—S2 2.3447 (4)
Sn1—S3i 2.4550 (4)
Sn1—S3 2.4564 (4)

Symmetry code: (i) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N9—H9C⋯N10 0.89 2.10 2.965 (3) 163
N9—H9B⋯S1ii 0.89 2.44 3.314 (2) 167
N9—H9A⋯S2iii 0.89 2.49 3.370 (2) 168
N7—H7C⋯S1i 0.89 2.36 3.243 (2) 174
N7—H7B⋯S2iv 0.89 2.40 3.278 (2) 170
N7—H7A⋯S2v 0.89 2.57 3.411 (2) 159

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

This project was funded by the National Science Foundation (NSF) CAREER Award DMR-0645304 and the instrumentation was purchased with NSF grant, CRIF-0234872. This material is based upon work supported by the NSF under CHE-1005145 and CHE-1144419.

supplementary crystallographic information

Comment

While solvothermal syntheses have produced an assortment of anionic thiostannate building blocks, the [Sn2S6]4- moiety has been one of the most common (Zhou et al., 2009). It has also been shown that under certain conditions [Sn2S6]4- anions can be converted to forms such as [Sn3S7]2- and [Sn4S9]-, forming two-dimensional layered anionic networks (Jiang et al., 1998a,b). In 2003, solvothermal experiments aimed at preparing [Co(tren)2][Sn2S6] using the chelating ligand tris(2-aminoethyl)amine (C6H18N4, tren), resulted in the isolation and characterization of (H2tren)2[Sn2S6].2H2O (Näther et al., 2003) as a side product. We have now shown that the anhydrous version of this compound, (I) can be accessed when the reaction is carried out in anhydrous conditions and without any transition metal present. In the title compound, (H2tren)2[Sn2S6], (Fig. 1), the terminal Sn—S bonds, at 2.3307 (4) and 2.3447 (5) Å, are shorter than the Sn—S bond of 2.4565 (6) Å formed with the bridging sulfur. The interior S—Sn—S angle of 92.78 (2)° is tighter than those involving terminal sulfurs, where these angles range from 108.22 (2) to 120.55 (2)°. Collectively, the geometric parameters of the [Sn2S6]4- anion are in reasonable accordance with similar structures (Näther et al., 2003; Behrens et al., 2003). In the (H2tren)2+ cation, the C—N bond lengths for the two protonated pendant amines are slightly longer, at 1.490 (3) and 1.473 (3) Å, than the 1.446 (5) Å C—N bond for the neutral arm. The most distinct structural difference between the anhydrous structure and the previously reported hydrated form (Näther et al., 2003) is the positioning of the NH2 pedant amine. In the hydrated structure, it is aligned to facilitate a H-bonding interaction (H···N—H of 2.08 Å) with an NH3+ amine on a neighboring cation. In the anhydrous structure, the hydrogen bonding interaction (N9—H9C···N10, 2.10 Å) is formed within the same ligand, Fig. 2. Strong hydrogen bonding between the terminal sulfur atoms on the anion and the protonated amine centers on the cation (Fig. 2, Table 2) results in a three-dimensional network, Fig. 3.

Experimental

The title compound was prepared by solvothermal synthesis, using conditions comparable to Näther et al. (2003). 5.0 ml of tris-2-aminoethylamine (tren) was mixed with 1.00 mmol Sn and 3.0 mmol S in a 23 ml Parr(R); acid digestion apparatus. The mixture was heated to 423 K over 5 h and maintained at that temperature for 144 h. It was cooled to 363 K at 2 K/h, then cooled to 313 K at 6 K/h. The clear, colorless crystals were washed with hexane and recovered by vacuum filtration. This protocol produced large crystals, often several mm on the longest axis, and in one instance measuring over 20 mm.

Refinement

All H atoms except for those on N(10) were placed at calculated positions (C—H at 0.97 Å, N—H at 0.87 Å) and refined as riding atoms with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(N). The two H atoms on N(10) were identified from the difference Fourier map and refined as a rigid group with Uiso(H) = 1.5Ueq(N).

Figures

Fig. 1.

Fig. 1.

The structure of (C6H20N4)2[Sn2S6].The thermal ellipsoids have been drawn at the 50% probability level. Symmetry code: (i) = -x, -y + 1, -z + 1.

Fig. 2.

Fig. 2.

Hydrogen bonding interactions within the (H2tren)2+ cation and between the cation and the terminal sulfurs of the [Sn2S6]4- anion. Symmetry codes as presented in Table 2.

Fig. 3.

Fig. 3.

View down the a axis illustrating the three-dimensional hydrogen bonding network.

Crystal data

(C6H20N4)2[Sn2S6] F(000) = 728
Mr = 363.13 Dx = 1.768 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 9995 reflections
a = 9.9280 (2) Å θ = 2.3–33.1°
b = 14.8845 (3) Å µ = 2.31 mm1
c = 10.2498 (2) Å T = 296 K
β = 115.758 (1)° Clear, colourless
V = 1364.15 (5) Å3 0.61 × 0.57 × 0.39 mm
Z = 4

Data collection

Bruker SMART APEX diffractometer 4907 independent reflections
Radiation source: fine-focus sealed tube 4460 reflections with I > 2σ(I)
graphite Rint = 0.023
φ and ω Scans scans θmax = 33.1°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) h = −14→14
Tmin = 0.334, Tmax = 0.467 k = −22→22
25432 measured reflections l = −15→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.058 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0298P)2 + 0.7916P] where P = (Fo2 + 2Fc2)/3
4907 reflections (Δ/σ)max = 0.002
132 parameters Δρmax = 1.22 e Å3
0 restraints Δρmin = −0.51 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Sn1 0.01082 (1) 0.468130 (7) 0.66292 (1) 0.02312 (4)
S1 0.18598 (5) 0.52916 (3) 0.87984 (5) 0.03186 (9)
S2 −0.15015 (5) 0.35310 (3) 0.66377 (5) 0.03259 (9)
S3 0.13815 (5) 0.41901 (3) 0.51649 (5) 0.03229 (9)
C1 0.1339 (2) 0.3225 (1) 0.0717 (2) 0.0349 (3)
H1A 0.1600 0.3833 0.0573 0.042*
H1B 0.1715 0.2818 0.0213 0.042*
C2 0.2059 (2) 0.3005 (1) 0.2327 (2) 0.0380 (4)
H2A 0.1620 0.3379 0.2817 0.046*
H2B 0.1862 0.2382 0.2463 0.046*
C3 0.4166 (3) 0.4070 (2) 0.3308 (4) 0.0552 (6)
H3A 0.4711 0.4130 0.4351 0.066*
H3B 0.3308 0.4468 0.2984 0.066*
C4 0.5166 (3) 0.4348 (2) 0.2610 (3) 0.0528 (6)
H4A 0.4596 0.4337 0.1565 0.063*
H4B 0.5507 0.4959 0.2895 0.063*
C5 0.4481 (3) 0.2526 (2) 0.4178 (2) 0.0466 (5)
H5A 0.5397 0.2814 0.4852 0.056*
H5B 0.3875 0.2407 0.4689 0.056*
C6 0.4856 (3) 0.1665 (2) 0.3699 (3) 0.0510 (5)
H6A 0.5435 0.1297 0.4538 0.061*
H6B 0.3942 0.1344 0.3106 0.061*
N7 −0.0318 (2) 0.3140 (1) 0.0112 (2) 0.0350 (3)
H7A −0.0551 0.2610 0.0361 0.053*
H7B −0.0715 0.3181 −0.0849 0.053*
H7C −0.0677 0.3577 0.0462 0.053*
N8 0.3655 (2) 0.3154 (1) 0.2955 (2) 0.0340 (3)
N9 0.6473 (2) 0.3752 (1) 0.3030 (2) 0.0393 (4)
H9A 0.7035 0.3791 0.3981 0.059*
H9B 0.7009 0.3916 0.2564 0.059*
H9C 0.6165 0.3187 0.2799 0.059*
N10 0.5705 (3) 0.1814 (1) 0.2875 (3) 0.0535 (5)
H10A 0.6363 0.1388 0.2887 0.080*
H10B 0.5046 0.1868 0.1857 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Sn1 0.02520 (5) 0.02399 (6) 0.02090 (5) −0.00209 (3) 0.01070 (4) −0.00039 (3)
S1 0.0316 (2) 0.0363 (2) 0.0254 (2) −0.0069 (1) 0.0102 (1) −0.0050 (1)
S2 0.0325 (2) 0.0375 (2) 0.0268 (2) −0.0115 (2) 0.0120 (1) 0.0009 (1)
S3 0.0400 (2) 0.0321 (2) 0.0300 (2) 0.0127 (2) 0.0201 (2) 0.0057 (1)
C1 0.0357 (8) 0.0370 (9) 0.0362 (9) 0.0016 (7) 0.0196 (7) 0.0056 (7)
C2 0.0316 (8) 0.049 (1) 0.0347 (9) −0.0045 (7) 0.0157 (7) −0.0022 (8)
C3 0.052 (1) 0.036 (1) 0.089 (2) −0.0123 (9) 0.041 (1) −0.019 (1)
C4 0.049 (1) 0.037 (1) 0.075 (2) −0.0066 (8) 0.022 (1) 0.011 (1)
C5 0.042 (1) 0.062 (1) 0.037 (1) −0.0056 (9) 0.0190 (9) −0.0023 (9)
C6 0.043 (1) 0.056 (1) 0.053 (1) 0.0121 (9) 0.020 (1) 0.021 (1)
N7 0.0356 (7) 0.0375 (8) 0.0291 (7) 0.0014 (6) 0.0112 (6) 0.0019 (6)
N8 0.0280 (6) 0.0343 (7) 0.0407 (8) −0.0060 (5) 0.0160 (6) −0.0056 (6)
N9 0.0330 (7) 0.0461 (9) 0.0379 (8) −0.0106 (7) 0.0146 (6) 0.0023 (7)
N10 0.055 (1) 0.049 (1) 0.067 (1) −0.0051 (9) 0.037 (1) −0.009 (1)

Geometric parameters (Å, °)

Sn1—S1 2.3307 (4) C4—H4A 0.9700
Sn1—S2 2.3447 (4) C4—H4B 0.9700
Sn1—S3i 2.4550 (4) C5—C6 1.477 (4)
Sn1—S3 2.4564 (4) C5—N8 1.491 (3)
S3—Sn1i 2.4550 (4) C5—H5A 0.9700
C1—N7 1.490 (2) C5—H5B 0.9700
C1—C2 1.521 (3) C6—N10 1.446 (3)
C1—H1A 0.9700 C6—H6A 0.9700
C1—H1B 0.9700 C6—H6B 0.9700
C2—N8 1.445 (2) N7—H7A 0.8900
C2—H2A 0.9700 N7—H7B 0.8900
C2—H2B 0.9700 N7—H7C 0.8900
C3—N8 1.444 (3) N9—H9A 0.8900
C3—C4 1.512 (4) N9—H9B 0.8900
C3—H3A 0.9700 N9—H9C 0.8900
C3—H3B 0.9700 N10—H10A 0.9066
C4—N9 1.474 (3) N10—H10B 0.9645
S1—Sn1—S2 120.55 (2) C6—C5—N8 113.0 (2)
S1—Sn1—S3i 113.87 (2) C6—C5—H5A 109.0
S2—Sn1—S3i 108.22 (2) N8—C5—H5A 109.0
S1—Sn1—S3 109.28 (2) C6—C5—H5B 109.0
S2—Sn1—S3 108.51 (2) N8—C5—H5B 109.0
S3i—Sn1—S3 92.78 (1) H5A—C5—H5B 107.8
Sn1i—S3—Sn1 87.22 (1) N10—C6—C5 110.8 (2)
N7—C1—C2 110.3 (1) N10—C6—H6A 109.5
N7—C1—H1A 109.6 C5—C6—H6A 109.5
C2—C1—H1A 109.6 N10—C6—H6B 109.5
N7—C1—H1B 109.6 C5—C6—H6B 109.5
C2—C1—H1B 109.6 H6A—C6—H6B 108.1
H1A—C1—H1B 108.1 C1—N7—H7A 109.5
N8—C2—C1 110.9 (2) C1—N7—H7B 109.5
N8—C2—H2A 109.5 H7A—N7—H7B 109.5
C1—C2—H2A 109.5 C1—N7—H7C 109.5
N8—C2—H2B 109.5 H7A—N7—H7C 109.5
C1—C2—H2B 109.5 H7B—N7—H7C 109.5
H2A—C2—H2B 108.0 C2—N8—C3 117.1 (2)
N8—C3—C4 111.8 (2) C2—N8—C5 112.0 (2)
N8—C3—H3A 109.3 C3—N8—C5 112.1 (2)
C4—C3—H3A 109.3 C4—N9—H9A 109.5
N8—C3—H3B 109.3 C4—N9—H9B 109.5
C4—C3—H3B 109.3 H9A—N9—H9B 109.5
H3A—C3—H3B 107.9 C4—N9—H9C 109.5
N9—C4—C3 111.9 (2) H9A—N9—H9C 109.5
N9—C4—H4A 109.2 H9B—N9—H9C 109.5
C3—C4—H4A 109.2 C6—N10—H10A 119.0
N9—C4—H4B 109.2 C6—N10—H10B 110.6
C3—C4—H4B 109.2 H10A—N10—H10B 102.6
H4A—C4—H4B 107.9

Symmetry codes: (i) −x, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N9—H9C···N10 0.89 2.10 2.965 (3) 163.
N9—H9B···S1ii 0.89 2.44 3.314 (2) 167.
N9—H9A···S2iii 0.89 2.49 3.370 (2) 168.
N7—H7C···S1i 0.89 2.36 3.243 (2) 174.
N7—H7B···S2iv 0.89 2.40 3.278 (2) 170.
N7—H7A···S2v 0.89 2.57 3.411 (2) 159.

Symmetry codes: (ii) −x+1, −y+1, −z+1; (iii) x+1, y, z; (i) −x, −y+1, −z+1; (iv) x, y, z−1; (v) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2373).

References

  1. Behrens, M., Scherb, S., Näther, C. & Bensch, W. (2003). Z. Anorg. Allg. Chem. 629, 1367–1373.
  2. Bruker (1998). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Jia, D. X., Dai, J., Zhu, Q. Y., Lu, W. & Guo, W. J. (2005). Chin. J. Struct. Chem. 24, 1157–1163.
  4. Jiang, T., Lough, A. & Ozin, G. A. (1998b). Adv. Mater. 10, 42–46.
  5. Jiang, T., Lough, A., Ozin, G. A. & Bedard, R. L. (1998a). J. Mater. Chem. 8, 733–741.
  6. Li, J., Marler, B., Kessler, H., Soulard, M. & Kallus, S. (1997). Inorg. Chem. 36, 4697–4701. [DOI] [PubMed]
  7. Näther, C., Scherb, S. & Bensch, W. (2003). Acta Cryst. E59, m280–m282.
  8. Palmer, D. (2010). Crystal Maker CrystalMaker Software Ltd, Oxford, England.
  9. Sheldrick, G. M. (2002). SADABS University of Göttingen, Germany.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  12. Zhou, J., Dai, J., Bian, G. Q. & Li, C. Y. (2009). Coord. Chem. Rev. 253, 1221–1247.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536811038657/si2373sup1.cif

e-67-m1516-sup1.cif (16.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811038657/si2373Isup2.hkl

e-67-m1516-Isup2.hkl (240.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES