Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 12;67(Pt 11):m1523–m1524. doi: 10.1107/S1600536811038700

Bis[μ-3,5-bis­(2-pyrid­yl)pyrazolato]bis­(hydrogensulfato)­dicopper(II) methanol disolvate

Akio Mishima a, Akira Fuyuhiro b, Hitoshi Kumagai c, Satoshi Kawata a,*
PMCID: PMC3246951  PMID: 22219771

Abstract

The title compound, [Cu2(C13H9N4)2(HSO4)2]·2CH3OH, consists of discrete centrosymmetric dinuclear complex mol­ecules and methanol solvent mol­ecules. The CuII atom shows a square-pyramidal coordination geometry and is bonded to four N atoms of the two bis-chelating 3,5-bis­(2-pyrid­yl)pyrazol­ate ions (bpypz) and one O atom of the hydrogensulfate ion. The bpypz ligands in the complex mol­ecule are virtually coplanar [dihedral angle between the mean ligand planes = 0.000(1)°] with the CuII atom deviating in opposite directions from their best plane by 0.2080 (12) Å. π–π stacking inter­actions between the pyridyl and pyrazole rings [centroid–centroid distance = 3.391 (3) Å] and strong O—H⋯O hydrogen bonds between the hydrogensulfate ligands and the methanol mol­ecules assemble the mol­ecules into a one-dimensional polymeric structure extending along the a axis. The methanol mol­ecule acts both as an accepter and a donor in the hydrogen bonding.

Related literature

For metal complexes of 3,5-bis­(2-pyrid­yl)pyrazole, see: Munakata et al. (1995); Nakano et al. (2004); Du et al. (2005); Yoneda, Adachi, Hayami et al. (2006); Yoneda, Adachi, Nishio et al. (2006); Ishikawa et al. (2008, 2010). For an example of a coordinated hydrogensulfate ion, see: Dragancea et al. (2008). graphic file with name e-67-m1523-scheme1.jpg

Experimental

Crystal data

  • [Cu2(C13H9N4)2(HO4S)2]·2CH4O

  • M r = 827.82

  • Monoclinic, Inline graphic

  • a = 6.0909 (3) Å

  • b = 16.0581 (6) Å

  • c = 15.6579 (7) Å

  • β = 95.2044 (14)°

  • V = 1525.16 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.61 mm−1

  • T = 200 K

  • 0.35 × 0.04 × 0.03 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Rigaku, 1995) T min = 0.926, T max = 0.953

  • 16136 measured reflections

  • 2470 independent reflections

  • 3262 reflections with I > 2σ(I)

  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.024

  • wR(F 2) = 0.068

  • S = 1.08

  • 3470 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.51 e Å−3

Data collection: RAPID-AUTO (Rigaku, 2002); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811038700/gk2397sup1.cif

e-67-m1523-sup1.cif (25.7KB, cif)

Supplementary material file. DOI: 10.1107/S1600536811038700/gk2397Isup2.cdx

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811038700/gk2397Isup2.hkl

e-67-m1523-Isup2.hkl (170.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Cu1—O1 2.2696 (13)
Cu1—N1 2.0865 (13)
Cu1—N2 1.9558 (13)
Cu1—N3i 1.9507 (13)
Cu1—N4i 2.0924 (14)

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by funds (No. 101501) from the Central Research Institute of Fukuoka University and Grant-in-Aids for Science Research (No. 22550067) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

supplementary crystallographic information

Comment

3,5-Bis(2-pyridyl)pyrazole[Hbpypz] is a versatile ligand in the construction of a series of mononuclear, dinuclear and polynuclear complexes (Munakata et al., 1995; Du et al., 2005; Yoneda et al., 2006; Ishikawa et al., 2010). The dinuclear complexes show the structure where two bpypz- ions are bridging two metal ions with the axial coordination sites. This kind of dinuclear complexes with transition metal ions were reported previously (Nakano et al., 2004; Yoneda et al., 2006; Ishikawa et al., 2008). The title compound consists of the CuII dinuclear complex and two methanol solvent molecules. In the dinuclear complex, four N donors from two deprotonated tetradentate bridging bpypz- ligands form the basal plane (Table 1). The copper(II) ion is penta-coordinated and it is in a slightly deformed square-pyramidal coordination environment with the τ value of 0.001 (Fig. 1). The apical position is occupied by the hydrogensulfate ion. An uncommon feature is that a sulfate ion is actually bound as the hydrogensulfate ion as there are only a few instances of unidentately coordinated hydrogensulfate ion (Dragancea et al., 2008). The π···π stacking interactions between pyridyl and pyrazole rings [centroid-centroid distance 3.391 (3) Å ] and strong hydrogen bonds between the hydrogensulfate ligands and the methanol molecules assemble molecules into a one dimensional polymeric structure extended along the a axis (Table 2, Fig. 2). The methanol molecule acts both as an accepter and a donor in O-H···O hydrogen bond.

Experimental

A methanolic solution of CuSO4.6H2O (5ml, 10 mmolL-1) was transferred to a glass tube, and then a methanolic solution of Hbpypz (5ml, 10 mmolL-1) was poured into the glass tube without mixing the solutions. Green crystals began to form at ambient temperature within one week (yield 84%). Elemental analysis: calcd (%) for C28H28Cu2N8O10S2: C 40.62, H 3.41, N 13.54; found: C 40.45, H 3.28, N 13.60.

Refinement

The C-bound hydrogen atoms in the bpypz- ion and the methyl group of the methanol molecule were placed at calculated positions, C—H 0.950 Å and 0.980 Å respectively, and were treated as riding on their parent atoms with Uiso(H) set to 1.2 Ueq(C). The O-bound hydrogen atoms in the hydrogensulfate ion and the methanol molecule were located in a difference Fourier map. The H-atom coordinates were fixed. The distances were O2–H10 0.90 Å and O5–H11 0.96 Å.

Figures

Fig. 1.

Fig. 1.

ORTEP drawing for the title complex showing 50% probability displacement ellipsoids. Symmentry code for unlabelled atoms: -x, -y+1, -z+1.

Fig. 2.

Fig. 2.

A fragment of one-dimensional chain structure of the title compound. Hydrogen bonds are shown as dashed lines.

Fig. 3.

Fig. 3.

Crystal structure for the title compound viewed along the a axis (a) and the b axis (b). The C-bound hydrogen atoms have been omitted.

Crystal data

[Cu2(C13H9N4)2(HO4S)2]·2CH4O F(000) = 844.00
Mr = 827.82 Dx = 1.803 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ybc Cell parameters from 14158 reflections
a = 6.0909 (3) Å θ = 3.4–27.5°
b = 16.0581 (6) Å µ = 1.61 mm1
c = 15.6579 (7) Å T = 200 K
β = 95.2044 (14)° Column, green
V = 1525.16 (12) Å3 0.35 × 0.04 × 0.03 mm
Z = 2

Data collection

Rigaku R-AXIS RAPID diffractometer 3262 reflections with F2 > 2.0σ(F2)
Detector resolution: 10.000 pixels mm-1 Rint = 0.021
ω scans θmax = 27.4°
Absorption correction: multi-scan (ABSCOR; Rigaku, 1995) h = −7→7
Tmin = 0.926, Tmax = 0.953 k = −20→20
16136 measured reflections l = −20→20
2470 independent reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068 H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0383P)2 + 0.881P] where P = (Fo2 + 2Fc2)/3
3470 reflections (Δ/σ)max = 0.001
227 parameters Δρmax = 0.39 e Å3
0 restraints Δρmin = −0.51 e Å3
Primary atom site location: structure-invariant direct methods

Special details

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY
Refinement. Refinement was performed using all reflections. The weighted R-factor(wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.28031 (3) 0.520598 (11) 0.578370 (12) 0.01532 (7)
S1 0.20037 (6) 0.55399 (2) 0.78731 (2) 0.01893 (10)
O1 0.1195 (2) 0.56027 (8) 0.69710 (8) 0.0266 (3)
O2 0.4401 (2) 0.58901 (8) 0.78864 (8) 0.0293 (3)
O3 0.2141 (3) 0.46998 (8) 0.81989 (9) 0.0292 (3)
O4 0.0797 (3) 0.60921 (9) 0.84007 (9) 0.0356 (4)
O5 0.7222 (2) 0.55846 (10) 0.91528 (9) 0.0331 (3)
N1 0.4667 (3) 0.42870 (8) 0.64544 (9) 0.0172 (3)
N2 0.0927 (2) 0.42369 (8) 0.55066 (9) 0.0175 (3)
N3 −0.1001 (2) 0.41178 (8) 0.50440 (9) 0.0172 (3)
N4 −0.4729 (3) 0.37148 (8) 0.42106 (9) 0.0180 (3)
C1 0.6627 (3) 0.43350 (10) 0.69186 (11) 0.0222 (4)
C2 0.7564 (3) 0.36790 (11) 0.73994 (11) 0.0243 (4)
C3 0.6436 (3) 0.29342 (11) 0.74028 (11) 0.0249 (4)
C4 0.4411 (3) 0.28646 (10) 0.69234 (11) 0.0221 (4)
C5 0.3577 (3) 0.35468 (10) 0.64594 (10) 0.0168 (3)
C6 0.1491 (3) 0.35246 (9) 0.59261 (10) 0.0170 (3)
C7 −0.0117 (3) 0.29197 (9) 0.57300 (10) 0.0186 (3)
C8 −0.1656 (3) 0.33282 (9) 0.51668 (10) 0.0167 (3)
C9 −0.3750 (3) 0.30969 (9) 0.47033 (10) 0.0169 (3)
C10 −0.4679 (3) 0.23107 (10) 0.47581 (11) 0.0226 (4)
C11 −0.6675 (3) 0.21423 (11) 0.42906 (12) 0.0262 (4)
C12 −0.7683 (3) 0.27685 (11) 0.37925 (12) 0.0256 (4)
C13 −0.6672 (3) 0.35401 (11) 0.37704 (11) 0.0232 (4)
C14 0.7361 (4) 0.47382 (13) 0.94479 (15) 0.0361 (5)
H1 0.7415 0.4846 0.6918 0.0267*
H2 0.8955 0.3741 0.7720 0.0292*
H3 0.7036 0.2475 0.7729 0.0299*
H4 0.3610 0.2357 0.6914 0.0266*
H5 −0.0154 0.2363 0.5932 0.0223*
H6 −0.3957 0.1894 0.5111 0.0272*
H7 −0.7334 0.1608 0.4313 0.0314*
H8 −0.9054 0.2671 0.3469 0.0308*
H9 −0.7386 0.3966 0.3428 0.0278*
H10 0.5306 0.5733 0.8344 0.0351*
H11 0.8529 0.5697 0.8873 0.0397*
H12 0.8658 0.4471 0.9240 0.0434*
H13 0.6029 0.4436 0.9229 0.0434*
H14 0.7489 0.4730 1.0076 0.0434*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.01457 (11) 0.01325 (11) 0.01755 (11) −0.00117 (6) −0.00178 (7) 0.00169 (6)
S1 0.02020 (19) 0.01756 (19) 0.01917 (19) −0.00183 (14) 0.00250 (15) −0.00195 (14)
O1 0.0213 (6) 0.0362 (7) 0.0219 (6) 0.0049 (6) −0.0005 (5) −0.0002 (5)
O2 0.0235 (6) 0.0335 (7) 0.0299 (7) −0.0093 (6) −0.0023 (5) 0.0060 (6)
O3 0.0320 (7) 0.0207 (6) 0.0344 (8) −0.0032 (5) 0.0007 (6) 0.0053 (5)
O4 0.0447 (8) 0.0269 (7) 0.0380 (8) −0.0005 (6) 0.0189 (7) −0.0097 (6)
O5 0.0244 (7) 0.0382 (8) 0.0362 (8) −0.0030 (6) −0.0003 (6) 0.0022 (6)
N1 0.0175 (6) 0.0153 (6) 0.0187 (7) 0.0016 (5) 0.0003 (5) −0.0006 (5)
N2 0.0169 (6) 0.0155 (6) 0.0195 (7) −0.0008 (5) −0.0028 (5) 0.0018 (5)
N3 0.0171 (6) 0.0146 (6) 0.0191 (7) −0.0022 (5) −0.0022 (5) 0.0017 (5)
N4 0.0166 (6) 0.0173 (6) 0.0202 (7) −0.0014 (5) 0.0014 (5) 0.0007 (5)
C1 0.0189 (8) 0.0202 (8) 0.0269 (9) 0.0003 (6) −0.0019 (7) −0.0028 (7)
C2 0.0204 (8) 0.0268 (9) 0.0244 (9) 0.0040 (7) −0.0052 (7) −0.0028 (7)
C3 0.0255 (9) 0.0247 (9) 0.0233 (9) 0.0054 (7) −0.0043 (7) 0.0042 (7)
C4 0.0236 (8) 0.0190 (8) 0.0232 (8) 0.0006 (7) −0.0016 (7) 0.0035 (6)
C5 0.0182 (7) 0.0164 (7) 0.0161 (7) 0.0013 (6) 0.0022 (6) −0.0003 (6)
C6 0.0182 (7) 0.0154 (7) 0.0174 (7) 0.0015 (6) 0.0012 (6) 0.0021 (6)
C7 0.0205 (8) 0.0149 (7) 0.0203 (8) −0.0004 (6) 0.0009 (6) 0.0022 (6)
C8 0.0183 (7) 0.0141 (7) 0.0178 (7) −0.0015 (6) 0.0026 (6) 0.0006 (6)
C9 0.0175 (7) 0.0160 (7) 0.0173 (7) −0.0006 (6) 0.0030 (6) −0.0011 (6)
C10 0.0238 (8) 0.0172 (7) 0.0267 (9) −0.0021 (7) 0.0010 (7) 0.0006 (6)
C11 0.0254 (9) 0.0208 (8) 0.0322 (10) −0.0082 (7) 0.0020 (7) −0.0031 (7)
C12 0.0186 (8) 0.0290 (9) 0.0286 (9) −0.0070 (7) −0.0020 (7) −0.0023 (7)
C13 0.0185 (8) 0.0248 (8) 0.0254 (8) −0.0021 (7) −0.0027 (7) 0.0026 (7)
C14 0.0367 (11) 0.0384 (12) 0.0331 (11) −0.0026 (9) 0.0014 (8) 0.0057 (9)

Geometric parameters (Å, °)

Cu1—O1 2.2696 (13) C6—C7 1.394 (2)
Cu1—N1 2.0865 (13) C7—C8 1.392 (2)
Cu1—N2 1.9558 (13) C8—C9 1.457 (2)
Cu1—N3i 1.9507 (13) C9—C10 1.389 (3)
Cu1—N4i 2.0924 (14) C10—C11 1.387 (3)
S1—O1 1.4566 (13) C11—C12 1.382 (3)
S1—O2 1.5630 (13) C12—C13 1.385 (3)
S1—O3 1.4420 (14) O2—H10 0.900
S1—O4 1.4557 (16) O5—H11 0.960
O5—C14 1.436 (3) C1—H1 0.950
N1—C1 1.342 (2) C2—H2 0.950
N1—C5 1.362 (2) C3—H3 0.950
N2—N3 1.3368 (18) C4—H4 0.950
N2—C6 1.348 (2) C7—H5 0.950
N3—C8 1.348 (2) C10—H6 0.950
N4—C9 1.361 (2) C11—H7 0.950
N4—C13 1.344 (2) C12—H8 0.950
C1—C2 1.387 (3) C13—H9 0.950
C2—C3 1.380 (3) C14—H12 0.980
C3—C4 1.389 (3) C14—H13 0.980
C4—C5 1.385 (3) C14—H14 0.980
C5—C6 1.457 (2)
O1—Cu1—N1 92.40 (5) N2—C6—C7 109.97 (13)
O1—Cu1—N2 96.79 (6) C5—C6—C7 134.63 (14)
O1—Cu1—N3i 97.44 (6) C6—C7—C8 103.33 (13)
O1—Cu1—N4i 92.72 (5) N3—C8—C7 110.04 (13)
N1—Cu1—N2 80.16 (6) N3—C8—C9 115.19 (13)
N1—Cu1—N3i 167.37 (6) C7—C8—C9 134.77 (14)
N1—Cu1—N4i 107.72 (6) N4—C9—C8 114.53 (13)
N2—Cu1—N3i 90.77 (6) N4—C9—C10 122.53 (14)
N2—Cu1—N4i 167.42 (6) C8—C9—C10 122.94 (14)
N3i—Cu1—N4i 79.82 (6) C9—C10—C11 119.12 (15)
O1—S1—O2 102.78 (7) C10—C11—C12 118.63 (16)
O1—S1—O3 114.30 (8) C11—C12—C13 119.29 (16)
O1—S1—O4 111.38 (8) N4—C13—C12 123.13 (16)
O2—S1—O3 107.92 (8) N1—C1—H1 118.240
O2—S1—O4 107.00 (8) C2—C1—H1 118.243
O3—S1—O4 112.66 (9) C1—C2—H2 120.658
Cu1—O1—S1 129.93 (8) C3—C2—H2 120.663
Cu1—N1—C1 130.43 (11) C2—C3—H3 120.467
Cu1—N1—C5 112.14 (10) C4—C3—H3 120.467
C1—N1—C5 117.20 (14) C3—C4—H4 120.496
Cu1—N2—N3 134.51 (11) C5—C4—H4 120.484
Cu1—N2—C6 116.71 (10) C6—C7—H5 128.336
N3—N2—C6 108.36 (13) C8—C7—H5 128.337
Cu1i—N3—N2 133.96 (11) C9—C10—H6 120.442
Cu1i—N3—C8 117.54 (10) C11—C10—H6 120.440
N2—N3—C8 108.31 (13) C10—C11—H7 120.683
Cu1i—N4—C9 112.64 (10) C12—C11—H7 120.692
Cu1i—N4—C13 129.97 (12) C11—C12—H8 120.351
C9—N4—C13 117.30 (14) C13—C12—H8 120.364
N1—C1—C2 123.52 (15) N4—C13—H9 118.439
C1—C2—C3 118.68 (16) C12—C13—H9 118.430
C2—C3—C4 119.07 (16) O5—C14—H12 109.477
C3—C4—C5 119.02 (15) O5—C14—H13 109.477
N1—C5—C4 122.52 (14) O5—C14—H14 109.472
N1—C5—C6 114.75 (14) H12—C14—H13 109.472
C4—C5—C6 122.73 (15) H12—C14—H14 109.469
N2—C6—C5 115.40 (13) H13—C14—H14 109.460
O1—Cu1—N1—C1 −85.61 (12) Cu1—N2—C6—C5 −6.86 (18)
O1—Cu1—N1—C5 88.62 (9) Cu1—N2—C6—C7 173.75 (9)
N1—Cu1—O1—S1 26.68 (10) N3—N2—C6—C5 179.56 (12)
O1—Cu1—N2—N3 88.20 (13) N3—N2—C6—C7 0.17 (17)
O1—Cu1—N2—C6 −83.23 (10) C6—N2—N3—Cu1i −174.97 (13)
N2—Cu1—O1—S1 107.06 (10) C6—N2—N3—C8 −0.31 (17)
O1—Cu1—N3i—N2i −87.66 (13) Cu1i—N3—C8—C7 176.01 (9)
O1—Cu1—N3i—C8i 86.62 (10) Cu1i—N3—C8—C9 −4.37 (18)
N3i—Cu1—O1—S1 −161.27 (10) N2—N3—C8—C7 0.34 (17)
O1—Cu1—N4i—C9i −92.61 (9) N2—N3—C8—C9 179.96 (12)
O1—Cu1—N4i—C13i 83.70 (12) Cu1i—N4—C9—C8 3.47 (16)
N4i—Cu1—O1—S1 −81.19 (10) Cu1i—N4—C9—C10 −176.54 (10)
N1—Cu1—N2—N3 179.47 (14) Cu1i—N4—C13—C12 175.54 (10)
N1—Cu1—N2—C6 8.03 (9) C9—N4—C13—C12 −0.6 (3)
N2—Cu1—N1—C1 177.90 (13) C13—N4—C9—C8 −179.71 (13)
N2—Cu1—N1—C5 −7.86 (9) C13—N4—C9—C10 0.3 (3)
N1—Cu1—N4i—C9i 174.00 (8) N1—C1—C2—C3 0.2 (3)
N1—Cu1—N4i—C13i −9.69 (14) C1—C2—C3—C4 0.3 (3)
N4i—Cu1—N1—C1 8.01 (14) C2—C3—C4—C5 −0.3 (3)
N4i—Cu1—N1—C5 −177.75 (8) C3—C4—C5—N1 −0.0 (3)
N2—Cu1—N3i—N2i 9.29 (14) C3—C4—C5—C6 178.73 (14)
N2—Cu1—N3i—C8i −176.42 (10) N1—C5—C6—N2 −0.2 (2)
N3i—Cu1—N2—N3 −9.38 (14) N1—C5—C6—C7 178.96 (15)
N3i—Cu1—N2—C6 179.19 (10) C4—C5—C6—N2 −179.10 (14)
N3i—Cu1—N4i—C9i 4.46 (9) C4—C5—C6—C7 0.1 (3)
N3i—Cu1—N4i—C13i −179.23 (13) N2—C6—C7—C8 0.03 (17)
N4i—Cu1—N3i—N2i −179.10 (14) C5—C6—C7—C8 −179.20 (17)
N4i—Cu1—N3i—C8i −4.82 (9) C6—C7—C8—N3 −0.22 (17)
O2—S1—O1—Cu1 47.83 (11) C6—C7—C8—C9 −179.74 (16)
O3—S1—O1—Cu1 −68.82 (12) N3—C8—C9—N4 0.3 (2)
O4—S1—O1—Cu1 162.08 (10) N3—C8—C9—C10 −179.68 (13)
Cu1—N1—C1—C2 173.45 (10) C7—C8—C9—N4 179.81 (17)
Cu1—N1—C5—C4 −174.59 (10) C7—C8—C9—C10 −0.2 (3)
Cu1—N1—C5—C6 6.54 (16) N4—C9—C10—C11 0.4 (3)
C1—N1—C5—C4 0.5 (3) C8—C9—C10—C11 −179.63 (14)
C1—N1—C5—C6 −178.39 (13) C9—C10—C11—C12 −0.7 (3)
C5—N1—C1—C2 −0.5 (3) C10—C11—C12—C13 0.4 (3)
Cu1—N2—N3—Cu1i 13.1 (3) C11—C12—C13—N4 0.3 (3)
Cu1—N2—N3—C8 −172.25 (11)

Symmetry codes: (i) −x, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H10···O5 0.90 1.66 2.5509 (18) 170
O5—H11···O4ii 0.96 1.74 2.694 (2) 169

Symmetry codes: (ii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2397).

References

  1. Dragancea, D., Addison, A. W., Zeller, M., Thompson, L. K., Hoole, D., Revenco, M. D. & Hunter, A. D. (2008). Eur. J. Inorg. Chem. pp. 2530–2536.
  2. Du, M., Chen, S.-T., Guo, Y.-M., Bu, X.-H. & Ribas, J. (2005). J. Mol. Struct., 737, 17–21.
  3. Ishikawa, R., Fuyuhiro, A., Hayami, S., Inoue, K. & Kawata, S. (2008). J. Mol. Struct., 892, 220–224.
  4. Ishikawa, R., Nakano, M., Fuyuhiro, A., Takeuchi, T., Kimura, S., Kashiwagi, T., Hagiwara, M., Kindo, K., Kaizaki, S. & Kawata, S. (2010). Chem. Eur. J. 16, 11139–11144. [DOI] [PubMed]
  5. Munakata, M., Wu, L. P., Yamamoto, M., Kuroda-Sowa, T., Maekawa, M., Kawata, S. & Kitagawa, S. (1995). J. Chem. Soc. Dalton Trans. pp. 4099–4106.
  6. Nakano, K., Suemura, N., Kawata, S., Fuyuhiro, A., Yagi, T., Nasu, S., Morimoto, S. & Kaizaki, S. (2004). Dalton Trans. pp. 982–988. [DOI] [PubMed]
  7. Rigaku (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  8. Rigaku (2002). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  9. Rigaku (2010). CrystalStructure Rigaku Corporation, Tokyo, Japan.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Yoneda, K., Adachi, K., Hayami, S., Maeda, Y., Katada, M., Fuyuhiro, A., Kawata, S. & Kaizaki, S. (2006). Chem. Commun. pp. 45–47. [DOI] [PubMed]
  12. Yoneda, K., Adachi, K., Nishio, K., Yamasaki, M., Fuyuhiro, A., Katada, M., Kaizaki, S. & Kawata, S. (2006). Angew. Chem. Int. Ed. 45, 5459–5461. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811038700/gk2397sup1.cif

e-67-m1523-sup1.cif (25.7KB, cif)

Supplementary material file. DOI: 10.1107/S1600536811038700/gk2397Isup2.cdx

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811038700/gk2397Isup2.hkl

e-67-m1523-Isup2.hkl (170.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES