Abstract
The fused bis-butterfly-shaped title compound, [Fe4(CS4)(CO)12], possesses an orthothiocarbonate (CS4 4−) ligand that acts as a bridge between two Fe2(CO)6 units. A short intramolecular S⋯S contact [2.6984 (8) and 2.6977 (8) Å] occurs in each S2Fe2(CO)6 fragment.
Related literature
For general background to related complexes, see: Mathur et al. (2009 ▶). For uses of R
3P/CS2 in coordination chemistry and organometallic chemistry, see: Galindo et al. (1999 ▶). For the synthesis of butterfly S2Fe2(CO)6 complexes, see: Song (2005 ▶). For related structures, see: Shaver et al. (1979 ▶); Ortega-Alfaro et al. (2004 ▶).
Experimental
Crystal data
[Fe4(CS4)(CO)12]
M r = 699.81
Triclinic,
a = 9.0875 (9) Å
b = 10.9002 (11) Å
c = 12.6448 (13) Å
α = 101.8859 (12)°
β = 92.4964 (12)°
γ = 110.0857 (12)°
V = 1142.2 (2) Å3
Z = 2
Mo Kα radiation
μ = 2.91 mm−1
T = 296 K
0.15 × 0.12 × 0.11 mm
Data collection
Bruker SMART APEX CCD diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2004 ▶) T min = 0.658, T max = 0.721
10006 measured reflections
5128 independent reflections
4237 reflections with I > 2σ(I)
R int = 0.025
Refinement
R[F 2 > 2σ(F 2)] = 0.026
wR(F 2) = 0.070
S = 1.04
5128 reflections
298 parameters
6 restraints
Δρmax = 0.35 e Å−3
Δρmin = −0.27 e Å−3
Data collection: SMART (Bruker, 2002 ▶); cell refinement: SAINT-Plus (Bruker, 2003 ▶); data reduction: SAINT-Plus; program(s) used to solve structure: SIR2004 (Burla et al., 2005 ▶); program(s) used to refine structure: SHELXTL (Sheldrick, 2008 ▶); molecular graphics: PLATON (Spek, 2009 ▶) and WinGX (Farrugia, 1999 ▶); software used to prepare material for publication: publCIF (Westrip, 2010 ▶).
Supplementary Material
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811041936/ng5239sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811041936/ng5239Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Selected geometric parameters (Å, °).
| C13—S1 | 1.827 (2) |
| C13—S2 | 1.8300 (19) |
| C13—S3 | 1.830 (2) |
| C13—S4 | 1.837 (2) |
| Fe1—S1 | 2.2730 (6) |
| Fe1—S2 | 2.2688 (7) |
| Fe1—Fe2 | 2.4949 (5) |
| Fe2—S1 | 2.2723 (6) |
| Fe2—S2 | 2.2685 (7) |
| Fe3—S3 | 2.2676 (6) |
| Fe3—S4 | 2.2680 (6) |
| Fe3—Fe4 | 2.5007 (5) |
| Fe4—S3 | 2.2712 (7) |
| Fe4—S4 | 2.2626 (6) |
| S1—C13—S2 | 95.10 (10) |
| S3—C13—S4 | 94.73 (9) |
Acknowledgments
The authors thank the Natural Science Foundation of China (No. 20572091) and the Natural Science Foundation of Jiangsu Province (No. 05KJB150151) for financial support of this work.
supplementary crystallographic information
Comment
The activation and cleavage of selected bonds of small molecules by transition metal complexes is one of the challenging subjects of recent researches. CS2 has been shown to undergo a variety of reactions with transition metals, including insertion and disproportionation, and there is a growing interest in the activation of CS2 from catalytic and biological points of view. The cleavage of the C—S bonds is often observed in various transition metal complexes in which chemistry has been explored for the hydrosulfurization of fossil products. In these complexes, the S2- ion derived from the C—S bond scission functions as a bridging ligand to link metal ions and metal cluster fragments and is generally of use in various cluster growth processes (Mathur et al., 2009).
Interestingly, the reaction of Et3P/CS2 and Fe3(CO)12 in THF under inert atmosphere at room temperature leads to the formation of a novel complex (Scheme 1). The molecular structure of the novel complex (Fig. 1) consists of two butterfly Fe2(CO)6 units connected by a bridging CS4 ligand in axial C—S bond fashions similar to the related complex Fe2(CO)6(µ-S)2CH2 (Shaver et al., 1979). The Fe—Fe bond lengths are 2.4949 (5) and 2.5007 (5) Å and close to 2.485 (1) Å in Fe2(CO)6(µ-S)2CH2, but slightly shorter than 2.511 (1) Å in the complex Fe2(CO)6(µ-SCH3)2 (Table 1) (Ortega-Alfaro et al., 2004), the corresponding C—S bond lengths are 1.827 (2), 1.830 (2) and 1.830 (2), 1.837 (2)°, respectively, which are longer than those in the complex Fe2(CO)6(µ-SCH3)2. For each S2Fe2(CO)6 butterfly core, the S—C—S bond angle is 95.10 (10) and 94.73 (9)° and close to 94.55 (3)° in Fe2(CO)6(µ-S)2CH2 (Table 1). As compared with 2.744 (1)–2.773 (1) Å in Fe2(CO)6(µ-SCH3)2, the S···S distance (2.6984 (8) and 2.6977 (8) Å) indicates an intramolecular short contact in each S2Fe2(CO)6 butterfly core.
Experimental
A THF solution of Et3P/CS2 (1 mmol) and Fe3(CO)12 (1 mmol) under inert atmosphere is stirred for 24 h at room temperature. After removal of the solvent, the mixture was purified by chromatography on silica gel with dichloromethane-petroleum ether (v/v, 1:3) as eluant to give the red-orange solid. Single crystals were grown from ether solution of the title compound.
Figures
Fig. 1.
The molecule of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
Crystal data
| [Fe4(CS4)(CO)12] | Z = 2 |
| Mr = 699.81 | F(000) = 684 |
| Triclinic, P1 | Dx = 2.035 Mg m−3 |
| a = 9.0875 (9) Å | Mo Kα radiation, λ = 0.71073 Å |
| b = 10.9002 (11) Å | Cell parameters from 4237 reflections |
| c = 12.6448 (13) Å | θ = 1.7–27.5° |
| α = 101.8859 (12)° | µ = 2.91 mm−1 |
| β = 92.4964 (12)° | T = 296 K |
| γ = 110.0857 (12)° | Prism, red |
| V = 1142.2 (2) Å3 | 0.15 × 0.12 × 0.11 mm |
Data collection
| Bruker SMART APEX CCD diffractometer | 5128 independent reflections |
| Radiation source: fine-focus sealed tube | 4237 reflections with I > 2σ(I) |
| graphite | Rint = 0.025 |
| ω and φ scans | θmax = 27.5°, θmin = 1.7° |
| Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | h = −11→11 |
| Tmin = 0.658, Tmax = 0.721 | k = −14→14 |
| 10006 measured reflections | l = −16→16 |
Refinement
| Refinement on F2 | 6 restraints |
| Least-squares matrix: full | Primary atom site location: structure-invariant direct methods |
| R[F2 > 2σ(F2)] = 0.026 | Secondary atom site location: difference Fourier map |
| wR(F2) = 0.070 | w = 1/[σ2(Fo2) + (0.0332P)2] where P = (Fo2 + 2Fc2)/3 |
| S = 1.04 | (Δ/σ)max < 0.001 |
| 5128 reflections | Δρmax = 0.35 e Å−3 |
| 298 parameters | Δρmin = −0.27 e Å−3 |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| C1 | 0.6561 (3) | 0.7935 (2) | 0.77984 (18) | 0.0440 (5) | |
| C2 | 0.8526 (3) | 0.8863 (3) | 0.6347 (2) | 0.0506 (6) | |
| C3 | 0.9578 (3) | 0.9654 (3) | 0.8400 (2) | 0.0495 (6) | |
| C4 | 1.1219 (3) | 0.7705 (3) | 0.5832 (2) | 0.0576 (7) | |
| C5 | 1.2260 (3) | 0.8567 (3) | 0.7869 (2) | 0.0499 (6) | |
| C6 | 1.1533 (3) | 0.5863 (3) | 0.6883 (2) | 0.0520 (6) | |
| C7 | 0.7715 (3) | 0.4656 (3) | 1.0044 (2) | 0.0518 (6) | |
| C8 | 0.6869 (3) | 0.2015 (3) | 0.9062 (2) | 0.0571 (7) | |
| C9 | 0.4644 (3) | 0.2955 (2) | 0.94124 (17) | 0.0461 (6) | |
| C10 | 0.5449 (3) | 0.1072 (3) | 0.6532 (2) | 0.0533 (6) | |
| C11 | 0.3306 (3) | 0.2117 (3) | 0.69401 (19) | 0.0538 (6) | |
| C12 | 0.5320 (3) | 0.3000 (2) | 0.54991 (19) | 0.0461 (5) | |
| C13 | 0.7801 (2) | 0.5349 (2) | 0.75626 (15) | 0.0326 (4) | |
| Fe1 | 0.85275 (4) | 0.80727 (3) | 0.74597 (2) | 0.03532 (9) | |
| Fe2 | 1.06610 (4) | 0.71578 (3) | 0.70503 (2) | 0.03858 (9) | |
| Fe3 | 0.64765 (4) | 0.34558 (3) | 0.88425 (2) | 0.03604 (9) | |
| Fe4 | 0.54035 (4) | 0.27424 (3) | 0.68685 (2) | 0.03649 (9) | |
| O1 | 0.5347 (2) | 0.7883 (2) | 0.80095 (16) | 0.0652 (5) | |
| O2 | 0.8523 (3) | 0.9343 (2) | 0.56303 (17) | 0.0808 (7) | |
| O3 | 1.0252 (3) | 1.0659 (2) | 0.89976 (17) | 0.0801 (6) | |
| O4 | 1.1562 (3) | 0.8060 (3) | 0.50561 (17) | 0.0906 (8) | |
| O5 | 1.3234 (2) | 0.9495 (2) | 0.83931 (18) | 0.0764 (6) | |
| O6 | 1.2101 (3) | 0.5078 (2) | 0.67522 (19) | 0.0802 (6) | |
| O7 | 0.8437 (3) | 0.5364 (2) | 1.08183 (16) | 0.0849 (7) | |
| O8 | 0.7108 (3) | 0.1096 (2) | 0.9194 (2) | 0.0923 (7) | |
| O9 | 0.3472 (2) | 0.2622 (2) | 0.97500 (15) | 0.0716 (6) | |
| O10 | 0.5481 (3) | 0.0019 (2) | 0.63331 (18) | 0.0840 (7) | |
| O11 | 0.1982 (3) | 0.1726 (3) | 0.69931 (18) | 0.0901 (7) | |
| O12 | 0.5245 (2) | 0.3122 (2) | 0.46352 (14) | 0.0717 (6) | |
| S1 | 0.92568 (6) | 0.68363 (5) | 0.84778 (4) | 0.03454 (12) | |
| S2 | 0.80928 (7) | 0.60300 (6) | 0.63482 (4) | 0.03789 (13) | |
| S3 | 0.80213 (6) | 0.37272 (5) | 0.74843 (4) | 0.03674 (12) | |
| S4 | 0.57807 (6) | 0.47963 (5) | 0.79267 (4) | 0.03420 (12) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| C1 | 0.0464 (14) | 0.0398 (13) | 0.0478 (12) | 0.0174 (11) | 0.0032 (10) | 0.0116 (10) |
| C2 | 0.0482 (15) | 0.0460 (14) | 0.0586 (14) | 0.0159 (12) | 0.0062 (12) | 0.0168 (12) |
| C3 | 0.0446 (14) | 0.0430 (14) | 0.0568 (14) | 0.0113 (12) | 0.0098 (11) | 0.0103 (12) |
| C4 | 0.0577 (17) | 0.0620 (17) | 0.0653 (17) | 0.0292 (14) | 0.0259 (14) | 0.0241 (14) |
| C5 | 0.0368 (14) | 0.0484 (15) | 0.0656 (16) | 0.0140 (12) | 0.0142 (12) | 0.0163 (13) |
| C6 | 0.0452 (15) | 0.0523 (15) | 0.0623 (15) | 0.0179 (12) | 0.0168 (12) | 0.0189 (13) |
| C7 | 0.0536 (16) | 0.0528 (15) | 0.0469 (13) | 0.0150 (13) | 0.0004 (11) | 0.0155 (12) |
| C8 | 0.0601 (17) | 0.0545 (16) | 0.0633 (16) | 0.0241 (14) | 0.0094 (13) | 0.0218 (13) |
| C9 | 0.0510 (15) | 0.0453 (14) | 0.0360 (11) | 0.0114 (12) | 0.0063 (10) | 0.0065 (10) |
| C10 | 0.0601 (17) | 0.0402 (14) | 0.0502 (14) | 0.0095 (12) | 0.0063 (12) | 0.0057 (11) |
| C11 | 0.0481 (16) | 0.0526 (16) | 0.0440 (13) | 0.0020 (13) | 0.0040 (11) | 0.0040 (11) |
| C12 | 0.0436 (14) | 0.0401 (13) | 0.0434 (13) | 0.0046 (11) | 0.0000 (10) | 0.0049 (10) |
| C13 | 0.0291 (11) | 0.0319 (10) | 0.0341 (10) | 0.0089 (9) | 0.0031 (8) | 0.0057 (8) |
| Fe1 | 0.03283 (18) | 0.03237 (17) | 0.03938 (17) | 0.00973 (13) | 0.00397 (13) | 0.00912 (13) |
| Fe2 | 0.03253 (18) | 0.03943 (18) | 0.04416 (18) | 0.01127 (14) | 0.01067 (13) | 0.01241 (14) |
| Fe3 | 0.03703 (18) | 0.03452 (17) | 0.03534 (16) | 0.01093 (14) | 0.00442 (13) | 0.00903 (13) |
| Fe4 | 0.03603 (18) | 0.03052 (17) | 0.03559 (16) | 0.00580 (13) | 0.00263 (13) | 0.00313 (13) |
| O1 | 0.0438 (11) | 0.0676 (13) | 0.0955 (14) | 0.0303 (10) | 0.0199 (10) | 0.0237 (11) |
| O2 | 0.0919 (17) | 0.0883 (16) | 0.0771 (13) | 0.0311 (14) | 0.0146 (12) | 0.0530 (13) |
| O3 | 0.0750 (15) | 0.0484 (12) | 0.0894 (15) | 0.0052 (11) | 0.0037 (12) | −0.0119 (11) |
| O4 | 0.112 (2) | 0.112 (2) | 0.0796 (14) | 0.0537 (16) | 0.0579 (14) | 0.0566 (15) |
| O5 | 0.0456 (12) | 0.0589 (13) | 0.1025 (16) | 0.0024 (10) | 0.0007 (11) | 0.0014 (12) |
| O6 | 0.0805 (16) | 0.0736 (15) | 0.1125 (17) | 0.0495 (13) | 0.0371 (13) | 0.0347 (13) |
| O7 | 0.0857 (16) | 0.0882 (16) | 0.0530 (11) | 0.0075 (13) | −0.0226 (11) | 0.0045 (11) |
| O8 | 0.1114 (19) | 0.0722 (15) | 0.1227 (19) | 0.0545 (15) | 0.0225 (15) | 0.0475 (15) |
| O9 | 0.0573 (13) | 0.0795 (15) | 0.0636 (12) | 0.0077 (11) | 0.0265 (10) | 0.0115 (11) |
| O10 | 0.1131 (19) | 0.0391 (11) | 0.0960 (16) | 0.0283 (12) | 0.0166 (14) | 0.0056 (11) |
| O11 | 0.0473 (13) | 0.1058 (19) | 0.0861 (15) | −0.0053 (12) | 0.0126 (11) | 0.0119 (14) |
| O12 | 0.0788 (14) | 0.0732 (14) | 0.0428 (10) | 0.0033 (11) | −0.0061 (9) | 0.0147 (9) |
| S1 | 0.0314 (3) | 0.0334 (3) | 0.0332 (2) | 0.0058 (2) | 0.0010 (2) | 0.0063 (2) |
| S2 | 0.0398 (3) | 0.0375 (3) | 0.0317 (3) | 0.0086 (2) | 0.0031 (2) | 0.0077 (2) |
| S3 | 0.0338 (3) | 0.0338 (3) | 0.0430 (3) | 0.0135 (2) | 0.0070 (2) | 0.0071 (2) |
| S4 | 0.0298 (3) | 0.0309 (3) | 0.0400 (3) | 0.0097 (2) | 0.0045 (2) | 0.0062 (2) |
Geometric parameters (Å, °)
| C1—O1 | 1.131 (3) | C10—Fe4 | 1.798 (3) |
| C1—Fe1 | 1.819 (3) | C11—O11 | 1.140 (3) |
| C2—O2 | 1.136 (3) | C11—Fe4 | 1.804 (3) |
| C2—Fe1 | 1.795 (2) | C12—O12 | 1.129 (3) |
| C3—O3 | 1.142 (3) | C12—Fe4 | 1.813 (2) |
| C3—Fe1 | 1.796 (3) | C13—S1 | 1.827 (2) |
| C4—O4 | 1.145 (3) | C13—S2 | 1.8300 (19) |
| C4—Fe2 | 1.795 (3) | C13—S3 | 1.830 (2) |
| C5—O5 | 1.142 (3) | C13—S4 | 1.837 (2) |
| C5—Fe2 | 1.795 (3) | Fe1—S1 | 2.2730 (6) |
| C6—O6 | 1.130 (3) | Fe1—S2 | 2.2688 (7) |
| C6—Fe2 | 1.824 (3) | Fe1—Fe2 | 2.4949 (5) |
| C7—O7 | 1.127 (3) | Fe2—S1 | 2.2723 (6) |
| C7—Fe3 | 1.818 (3) | Fe2—S2 | 2.2685 (7) |
| C8—O8 | 1.138 (3) | Fe3—S3 | 2.2676 (6) |
| C8—Fe3 | 1.796 (3) | Fe3—S4 | 2.2680 (6) |
| C9—O9 | 1.134 (3) | Fe3—Fe4 | 2.5007 (5) |
| C9—Fe3 | 1.798 (3) | Fe4—S3 | 2.2712 (7) |
| C10—O10 | 1.135 (3) | Fe4—S4 | 2.2626 (6) |
| S1···S2 | 2.6984 (8) | S3···S4 | 2.6977 (8) |
| O1—C1—Fe1 | 178.3 (2) | C6—Fe2—Fe1 | 154.51 (8) |
| O2—C2—Fe1 | 178.8 (2) | S2—Fe2—Fe1 | 56.649 (18) |
| O3—C3—Fe1 | 179.6 (3) | S1—Fe2—Fe1 | 56.723 (17) |
| O4—C4—Fe2 | 179.2 (3) | C8—Fe3—C9 | 91.66 (12) |
| O5—C5—Fe2 | 177.0 (2) | C8—Fe3—C7 | 97.13 (12) |
| O6—C6—Fe2 | 177.6 (2) | C9—Fe3—C7 | 98.48 (11) |
| O7—C7—Fe3 | 176.7 (2) | C8—Fe3—S3 | 93.97 (9) |
| O8—C8—Fe3 | 179.5 (3) | C9—Fe3—S3 | 155.51 (7) |
| O9—C9—Fe3 | 178.5 (2) | C7—Fe3—S3 | 104.42 (8) |
| O10—C10—Fe4 | 179.2 (3) | C8—Fe3—S4 | 158.63 (9) |
| O11—C11—Fe4 | 179.5 (3) | C9—Fe3—S4 | 93.86 (8) |
| O12—C12—Fe4 | 178.0 (2) | C7—Fe3—S4 | 102.43 (8) |
| S1—C13—S3 | 118.10 (10) | S3—Fe3—S4 | 72.99 (2) |
| S1—C13—S2 | 95.10 (10) | C8—Fe3—Fe4 | 102.35 (9) |
| S3—C13—S2 | 117.13 (11) | C9—Fe3—Fe4 | 98.88 (7) |
| S1—C13—S4 | 116.95 (11) | C7—Fe3—Fe4 | 153.39 (8) |
| S3—C13—S4 | 94.73 (9) | S3—Fe3—Fe4 | 56.635 (18) |
| S2—C13—S4 | 116.62 (10) | S4—Fe3—Fe4 | 56.394 (17) |
| C2—Fe1—C3 | 92.20 (12) | C10—Fe4—C11 | 92.11 (13) |
| C2—Fe1—C1 | 97.54 (11) | C10—Fe4—C12 | 97.98 (11) |
| C3—Fe1—C1 | 96.81 (11) | C11—Fe4—C12 | 97.54 (11) |
| C2—Fe1—S2 | 93.44 (9) | C10—Fe4—S4 | 157.10 (8) |
| C3—Fe1—S2 | 158.89 (8) | C11—Fe4—S4 | 93.60 (9) |
| C1—Fe1—S2 | 102.58 (8) | C12—Fe4—S4 | 103.21 (8) |
| C2—Fe1—S1 | 156.74 (8) | C10—Fe4—S3 | 94.03 (9) |
| C3—Fe1—S1 | 94.58 (8) | C11—Fe4—S3 | 157.73 (8) |
| C1—Fe1—S1 | 103.69 (7) | C12—Fe4—S3 | 102.76 (8) |
| S2—Fe1—S1 | 72.90 (2) | S4—Fe4—S3 | 73.03 (2) |
| C2—Fe1—Fe2 | 100.11 (8) | C10—Fe4—Fe3 | 100.52 (8) |
| C3—Fe1—Fe2 | 102.33 (8) | C11—Fe4—Fe3 | 101.33 (8) |
| C1—Fe1—Fe2 | 153.30 (7) | C12—Fe4—Fe3 | 152.93 (8) |
| S2—Fe1—Fe2 | 56.636 (18) | S4—Fe4—Fe3 | 56.600 (16) |
| S1—Fe1—Fe2 | 56.695 (17) | S3—Fe4—Fe3 | 56.499 (16) |
| C5—Fe2—C4 | 91.26 (13) | C13—S1—Fe2 | 88.02 (6) |
| C5—Fe2—C6 | 100.64 (12) | C13—S1—Fe1 | 87.12 (6) |
| C4—Fe2—C6 | 96.91 (11) | Fe2—S1—Fe1 | 66.582 (18) |
| C5—Fe2—S2 | 153.65 (8) | C13—S2—Fe2 | 88.06 (7) |
| C4—Fe2—S2 | 93.88 (9) | C13—S2—Fe1 | 87.17 (7) |
| C6—Fe2—S2 | 104.35 (9) | Fe2—S2—Fe1 | 66.715 (19) |
| C5—Fe2—S1 | 93.23 (8) | C13—S3—Fe3 | 87.77 (7) |
| C4—Fe2—S1 | 157.61 (9) | C13—S3—Fe4 | 87.52 (7) |
| C6—Fe2—S1 | 103.77 (8) | Fe3—S3—Fe4 | 66.867 (19) |
| S2—Fe2—S1 | 72.92 (2) | C13—S4—Fe4 | 87.60 (7) |
| C5—Fe2—Fe1 | 97.00 (8) | C13—S4—Fe3 | 87.58 (6) |
| C4—Fe2—Fe1 | 100.96 (8) | Fe4—S4—Fe3 | 67.006 (19) |
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5239).
References
- Bruker (2002). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2003). SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
- Galindo, A., Miguel, D. & Perez, J. (1999). Coord. Chem. Rev. 193–195, 643–690.
- Mathur, P., Boodida, S., Ji, R. S. & Mobin, S. M. (2009). J. Organomet. Chem. 694, 3043–3045.
- Ortega-Alfaro, M. C., Hernández, N., Cerna, I., López-Cortés, J. G., Gómez, E., Toscano, R. A. & Alvarez-Toledano, C. (2004). J. Organomet. Chem. 689, 885–893.
- Shaver, A., Fitzpatrick, P. J., Steliou, K. & Butler, I. S. (1979). J. Am. Chem. Soc. 101, 1313–1315.
- Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Song, L.-C. (2005). Acc. Chem. Res. 38, 21–28. [DOI] [PubMed]
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811041936/ng5239sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811041936/ng5239Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report

