Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 12;67(Pt 11):m1534. doi: 10.1107/S1600536811041936

μ4-Orthothio­carbonato-tetra­kis­[tri­carbonyl­iron(I)](2 FeFe)

Yao-Cheng Shi a,*, Huan-Ren Cheng a, Li-Min Yuan b, Qian-Kun Li c
PMCID: PMC3246959  PMID: 22219779

Abstract

The fused bis-butterfly-shaped title compound, [Fe4(CS4)(CO)12], possesses an orthothio­carbonate (CS4 4−) ligand that acts as a bridge between two Fe2(CO)6 units. A short intra­molecular S⋯S contact [2.6984 (8) and 2.6977 (8) Å] occurs in each S2Fe2(CO)6 fragment.

Related literature

For general background to related complexes, see: Mathur et al. (2009). For uses of R 3P/CS2 in coordination chemistry and organometallic chemistry, see: Galindo et al. (1999). For the synthesis of butterfly S2Fe2(CO)6 complexes, see: Song (2005). For related structures, see: Shaver et al. (1979); Ortega-Alfaro et al. (2004).graphic file with name e-67-m1534-scheme1.jpg

Experimental

Crystal data

  • [Fe4(CS4)(CO)12]

  • M r = 699.81

  • Triclinic, Inline graphic

  • a = 9.0875 (9) Å

  • b = 10.9002 (11) Å

  • c = 12.6448 (13) Å

  • α = 101.8859 (12)°

  • β = 92.4964 (12)°

  • γ = 110.0857 (12)°

  • V = 1142.2 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.91 mm−1

  • T = 296 K

  • 0.15 × 0.12 × 0.11 mm

Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004) T min = 0.658, T max = 0.721

  • 10006 measured reflections

  • 5128 independent reflections

  • 4237 reflections with I > 2σ(I)

  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026

  • wR(F 2) = 0.070

  • S = 1.04

  • 5128 reflections

  • 298 parameters

  • 6 restraints

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and WinGX (Farrugia, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811041936/ng5239sup1.cif

e-67-m1534-sup1.cif (18KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811041936/ng5239Isup2.hkl

e-67-m1534-Isup2.hkl (251.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

C13—S1 1.827 (2)
C13—S2 1.8300 (19)
C13—S3 1.830 (2)
C13—S4 1.837 (2)
Fe1—S1 2.2730 (6)
Fe1—S2 2.2688 (7)
Fe1—Fe2 2.4949 (5)
Fe2—S1 2.2723 (6)
Fe2—S2 2.2685 (7)
Fe3—S3 2.2676 (6)
Fe3—S4 2.2680 (6)
Fe3—Fe4 2.5007 (5)
Fe4—S3 2.2712 (7)
Fe4—S4 2.2626 (6)
S1—C13—S2 95.10 (10)
S3—C13—S4 94.73 (9)

Acknowledgments

The authors thank the Natural Science Foundation of China (No. 20572091) and the Natural Science Foundation of Jiangsu Province (No. 05KJB150151) for financial support of this work.

supplementary crystallographic information

Comment

The activation and cleavage of selected bonds of small molecules by transition metal complexes is one of the challenging subjects of recent researches. CS2 has been shown to undergo a variety of reactions with transition metals, including insertion and disproportionation, and there is a growing interest in the activation of CS2 from catalytic and biological points of view. The cleavage of the C—S bonds is often observed in various transition metal complexes in which chemistry has been explored for the hydrosulfurization of fossil products. In these complexes, the S2- ion derived from the C—S bond scission functions as a bridging ligand to link metal ions and metal cluster fragments and is generally of use in various cluster growth processes (Mathur et al., 2009).

Interestingly, the reaction of Et3P/CS2 and Fe3(CO)12 in THF under inert atmosphere at room temperature leads to the formation of a novel complex (Scheme 1). The molecular structure of the novel complex (Fig. 1) consists of two butterfly Fe2(CO)6 units connected by a bridging CS4 ligand in axial C—S bond fashions similar to the related complex Fe2(CO)6(µ-S)2CH2 (Shaver et al., 1979). The Fe—Fe bond lengths are 2.4949 (5) and 2.5007 (5) Å and close to 2.485 (1) Å in Fe2(CO)6(µ-S)2CH2, but slightly shorter than 2.511 (1) Å in the complex Fe2(CO)6(µ-SCH3)2 (Table 1) (Ortega-Alfaro et al., 2004), the corresponding C—S bond lengths are 1.827 (2), 1.830 (2) and 1.830 (2), 1.837 (2)°, respectively, which are longer than those in the complex Fe2(CO)6(µ-SCH3)2. For each S2Fe2(CO)6 butterfly core, the S—C—S bond angle is 95.10 (10) and 94.73 (9)° and close to 94.55 (3)° in Fe2(CO)6(µ-S)2CH2 (Table 1). As compared with 2.744 (1)–2.773 (1) Å in Fe2(CO)6(µ-SCH3)2, the S···S distance (2.6984 (8) and 2.6977 (8) Å) indicates an intramolecular short contact in each S2Fe2(CO)6 butterfly core.

Experimental

A THF solution of Et3P/CS2 (1 mmol) and Fe3(CO)12 (1 mmol) under inert atmosphere is stirred for 24 h at room temperature. After removal of the solvent, the mixture was purified by chromatography on silica gel with dichloromethane-petroleum ether (v/v, 1:3) as eluant to give the red-orange solid. Single crystals were grown from ether solution of the title compound.

Figures

Fig. 1.

Fig. 1.

The molecule of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

[Fe4(CS4)(CO)12] Z = 2
Mr = 699.81 F(000) = 684
Triclinic, P1 Dx = 2.035 Mg m3
a = 9.0875 (9) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.9002 (11) Å Cell parameters from 4237 reflections
c = 12.6448 (13) Å θ = 1.7–27.5°
α = 101.8859 (12)° µ = 2.91 mm1
β = 92.4964 (12)° T = 296 K
γ = 110.0857 (12)° Prism, red
V = 1142.2 (2) Å3 0.15 × 0.12 × 0.11 mm

Data collection

Bruker SMART APEX CCD diffractometer 5128 independent reflections
Radiation source: fine-focus sealed tube 4237 reflections with I > 2σ(I)
graphite Rint = 0.025
ω and φ scans θmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) h = −11→11
Tmin = 0.658, Tmax = 0.721 k = −14→14
10006 measured reflections l = −16→16

Refinement

Refinement on F2 6 restraints
Least-squares matrix: full Primary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.026 Secondary atom site location: difference Fourier map
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.0332P)2] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
5128 reflections Δρmax = 0.35 e Å3
298 parameters Δρmin = −0.27 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.6561 (3) 0.7935 (2) 0.77984 (18) 0.0440 (5)
C2 0.8526 (3) 0.8863 (3) 0.6347 (2) 0.0506 (6)
C3 0.9578 (3) 0.9654 (3) 0.8400 (2) 0.0495 (6)
C4 1.1219 (3) 0.7705 (3) 0.5832 (2) 0.0576 (7)
C5 1.2260 (3) 0.8567 (3) 0.7869 (2) 0.0499 (6)
C6 1.1533 (3) 0.5863 (3) 0.6883 (2) 0.0520 (6)
C7 0.7715 (3) 0.4656 (3) 1.0044 (2) 0.0518 (6)
C8 0.6869 (3) 0.2015 (3) 0.9062 (2) 0.0571 (7)
C9 0.4644 (3) 0.2955 (2) 0.94124 (17) 0.0461 (6)
C10 0.5449 (3) 0.1072 (3) 0.6532 (2) 0.0533 (6)
C11 0.3306 (3) 0.2117 (3) 0.69401 (19) 0.0538 (6)
C12 0.5320 (3) 0.3000 (2) 0.54991 (19) 0.0461 (5)
C13 0.7801 (2) 0.5349 (2) 0.75626 (15) 0.0326 (4)
Fe1 0.85275 (4) 0.80727 (3) 0.74597 (2) 0.03532 (9)
Fe2 1.06610 (4) 0.71578 (3) 0.70503 (2) 0.03858 (9)
Fe3 0.64765 (4) 0.34558 (3) 0.88425 (2) 0.03604 (9)
Fe4 0.54035 (4) 0.27424 (3) 0.68685 (2) 0.03649 (9)
O1 0.5347 (2) 0.7883 (2) 0.80095 (16) 0.0652 (5)
O2 0.8523 (3) 0.9343 (2) 0.56303 (17) 0.0808 (7)
O3 1.0252 (3) 1.0659 (2) 0.89976 (17) 0.0801 (6)
O4 1.1562 (3) 0.8060 (3) 0.50561 (17) 0.0906 (8)
O5 1.3234 (2) 0.9495 (2) 0.83931 (18) 0.0764 (6)
O6 1.2101 (3) 0.5078 (2) 0.67522 (19) 0.0802 (6)
O7 0.8437 (3) 0.5364 (2) 1.08183 (16) 0.0849 (7)
O8 0.7108 (3) 0.1096 (2) 0.9194 (2) 0.0923 (7)
O9 0.3472 (2) 0.2622 (2) 0.97500 (15) 0.0716 (6)
O10 0.5481 (3) 0.0019 (2) 0.63331 (18) 0.0840 (7)
O11 0.1982 (3) 0.1726 (3) 0.69931 (18) 0.0901 (7)
O12 0.5245 (2) 0.3122 (2) 0.46352 (14) 0.0717 (6)
S1 0.92568 (6) 0.68363 (5) 0.84778 (4) 0.03454 (12)
S2 0.80928 (7) 0.60300 (6) 0.63482 (4) 0.03789 (13)
S3 0.80213 (6) 0.37272 (5) 0.74843 (4) 0.03674 (12)
S4 0.57807 (6) 0.47963 (5) 0.79267 (4) 0.03420 (12)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0464 (14) 0.0398 (13) 0.0478 (12) 0.0174 (11) 0.0032 (10) 0.0116 (10)
C2 0.0482 (15) 0.0460 (14) 0.0586 (14) 0.0159 (12) 0.0062 (12) 0.0168 (12)
C3 0.0446 (14) 0.0430 (14) 0.0568 (14) 0.0113 (12) 0.0098 (11) 0.0103 (12)
C4 0.0577 (17) 0.0620 (17) 0.0653 (17) 0.0292 (14) 0.0259 (14) 0.0241 (14)
C5 0.0368 (14) 0.0484 (15) 0.0656 (16) 0.0140 (12) 0.0142 (12) 0.0163 (13)
C6 0.0452 (15) 0.0523 (15) 0.0623 (15) 0.0179 (12) 0.0168 (12) 0.0189 (13)
C7 0.0536 (16) 0.0528 (15) 0.0469 (13) 0.0150 (13) 0.0004 (11) 0.0155 (12)
C8 0.0601 (17) 0.0545 (16) 0.0633 (16) 0.0241 (14) 0.0094 (13) 0.0218 (13)
C9 0.0510 (15) 0.0453 (14) 0.0360 (11) 0.0114 (12) 0.0063 (10) 0.0065 (10)
C10 0.0601 (17) 0.0402 (14) 0.0502 (14) 0.0095 (12) 0.0063 (12) 0.0057 (11)
C11 0.0481 (16) 0.0526 (16) 0.0440 (13) 0.0020 (13) 0.0040 (11) 0.0040 (11)
C12 0.0436 (14) 0.0401 (13) 0.0434 (13) 0.0046 (11) 0.0000 (10) 0.0049 (10)
C13 0.0291 (11) 0.0319 (10) 0.0341 (10) 0.0089 (9) 0.0031 (8) 0.0057 (8)
Fe1 0.03283 (18) 0.03237 (17) 0.03938 (17) 0.00973 (13) 0.00397 (13) 0.00912 (13)
Fe2 0.03253 (18) 0.03943 (18) 0.04416 (18) 0.01127 (14) 0.01067 (13) 0.01241 (14)
Fe3 0.03703 (18) 0.03452 (17) 0.03534 (16) 0.01093 (14) 0.00442 (13) 0.00903 (13)
Fe4 0.03603 (18) 0.03052 (17) 0.03559 (16) 0.00580 (13) 0.00263 (13) 0.00313 (13)
O1 0.0438 (11) 0.0676 (13) 0.0955 (14) 0.0303 (10) 0.0199 (10) 0.0237 (11)
O2 0.0919 (17) 0.0883 (16) 0.0771 (13) 0.0311 (14) 0.0146 (12) 0.0530 (13)
O3 0.0750 (15) 0.0484 (12) 0.0894 (15) 0.0052 (11) 0.0037 (12) −0.0119 (11)
O4 0.112 (2) 0.112 (2) 0.0796 (14) 0.0537 (16) 0.0579 (14) 0.0566 (15)
O5 0.0456 (12) 0.0589 (13) 0.1025 (16) 0.0024 (10) 0.0007 (11) 0.0014 (12)
O6 0.0805 (16) 0.0736 (15) 0.1125 (17) 0.0495 (13) 0.0371 (13) 0.0347 (13)
O7 0.0857 (16) 0.0882 (16) 0.0530 (11) 0.0075 (13) −0.0226 (11) 0.0045 (11)
O8 0.1114 (19) 0.0722 (15) 0.1227 (19) 0.0545 (15) 0.0225 (15) 0.0475 (15)
O9 0.0573 (13) 0.0795 (15) 0.0636 (12) 0.0077 (11) 0.0265 (10) 0.0115 (11)
O10 0.1131 (19) 0.0391 (11) 0.0960 (16) 0.0283 (12) 0.0166 (14) 0.0056 (11)
O11 0.0473 (13) 0.1058 (19) 0.0861 (15) −0.0053 (12) 0.0126 (11) 0.0119 (14)
O12 0.0788 (14) 0.0732 (14) 0.0428 (10) 0.0033 (11) −0.0061 (9) 0.0147 (9)
S1 0.0314 (3) 0.0334 (3) 0.0332 (2) 0.0058 (2) 0.0010 (2) 0.0063 (2)
S2 0.0398 (3) 0.0375 (3) 0.0317 (3) 0.0086 (2) 0.0031 (2) 0.0077 (2)
S3 0.0338 (3) 0.0338 (3) 0.0430 (3) 0.0135 (2) 0.0070 (2) 0.0071 (2)
S4 0.0298 (3) 0.0309 (3) 0.0400 (3) 0.0097 (2) 0.0045 (2) 0.0062 (2)

Geometric parameters (Å, °)

C1—O1 1.131 (3) C10—Fe4 1.798 (3)
C1—Fe1 1.819 (3) C11—O11 1.140 (3)
C2—O2 1.136 (3) C11—Fe4 1.804 (3)
C2—Fe1 1.795 (2) C12—O12 1.129 (3)
C3—O3 1.142 (3) C12—Fe4 1.813 (2)
C3—Fe1 1.796 (3) C13—S1 1.827 (2)
C4—O4 1.145 (3) C13—S2 1.8300 (19)
C4—Fe2 1.795 (3) C13—S3 1.830 (2)
C5—O5 1.142 (3) C13—S4 1.837 (2)
C5—Fe2 1.795 (3) Fe1—S1 2.2730 (6)
C6—O6 1.130 (3) Fe1—S2 2.2688 (7)
C6—Fe2 1.824 (3) Fe1—Fe2 2.4949 (5)
C7—O7 1.127 (3) Fe2—S1 2.2723 (6)
C7—Fe3 1.818 (3) Fe2—S2 2.2685 (7)
C8—O8 1.138 (3) Fe3—S3 2.2676 (6)
C8—Fe3 1.796 (3) Fe3—S4 2.2680 (6)
C9—O9 1.134 (3) Fe3—Fe4 2.5007 (5)
C9—Fe3 1.798 (3) Fe4—S3 2.2712 (7)
C10—O10 1.135 (3) Fe4—S4 2.2626 (6)
S1···S2 2.6984 (8) S3···S4 2.6977 (8)
O1—C1—Fe1 178.3 (2) C6—Fe2—Fe1 154.51 (8)
O2—C2—Fe1 178.8 (2) S2—Fe2—Fe1 56.649 (18)
O3—C3—Fe1 179.6 (3) S1—Fe2—Fe1 56.723 (17)
O4—C4—Fe2 179.2 (3) C8—Fe3—C9 91.66 (12)
O5—C5—Fe2 177.0 (2) C8—Fe3—C7 97.13 (12)
O6—C6—Fe2 177.6 (2) C9—Fe3—C7 98.48 (11)
O7—C7—Fe3 176.7 (2) C8—Fe3—S3 93.97 (9)
O8—C8—Fe3 179.5 (3) C9—Fe3—S3 155.51 (7)
O9—C9—Fe3 178.5 (2) C7—Fe3—S3 104.42 (8)
O10—C10—Fe4 179.2 (3) C8—Fe3—S4 158.63 (9)
O11—C11—Fe4 179.5 (3) C9—Fe3—S4 93.86 (8)
O12—C12—Fe4 178.0 (2) C7—Fe3—S4 102.43 (8)
S1—C13—S3 118.10 (10) S3—Fe3—S4 72.99 (2)
S1—C13—S2 95.10 (10) C8—Fe3—Fe4 102.35 (9)
S3—C13—S2 117.13 (11) C9—Fe3—Fe4 98.88 (7)
S1—C13—S4 116.95 (11) C7—Fe3—Fe4 153.39 (8)
S3—C13—S4 94.73 (9) S3—Fe3—Fe4 56.635 (18)
S2—C13—S4 116.62 (10) S4—Fe3—Fe4 56.394 (17)
C2—Fe1—C3 92.20 (12) C10—Fe4—C11 92.11 (13)
C2—Fe1—C1 97.54 (11) C10—Fe4—C12 97.98 (11)
C3—Fe1—C1 96.81 (11) C11—Fe4—C12 97.54 (11)
C2—Fe1—S2 93.44 (9) C10—Fe4—S4 157.10 (8)
C3—Fe1—S2 158.89 (8) C11—Fe4—S4 93.60 (9)
C1—Fe1—S2 102.58 (8) C12—Fe4—S4 103.21 (8)
C2—Fe1—S1 156.74 (8) C10—Fe4—S3 94.03 (9)
C3—Fe1—S1 94.58 (8) C11—Fe4—S3 157.73 (8)
C1—Fe1—S1 103.69 (7) C12—Fe4—S3 102.76 (8)
S2—Fe1—S1 72.90 (2) S4—Fe4—S3 73.03 (2)
C2—Fe1—Fe2 100.11 (8) C10—Fe4—Fe3 100.52 (8)
C3—Fe1—Fe2 102.33 (8) C11—Fe4—Fe3 101.33 (8)
C1—Fe1—Fe2 153.30 (7) C12—Fe4—Fe3 152.93 (8)
S2—Fe1—Fe2 56.636 (18) S4—Fe4—Fe3 56.600 (16)
S1—Fe1—Fe2 56.695 (17) S3—Fe4—Fe3 56.499 (16)
C5—Fe2—C4 91.26 (13) C13—S1—Fe2 88.02 (6)
C5—Fe2—C6 100.64 (12) C13—S1—Fe1 87.12 (6)
C4—Fe2—C6 96.91 (11) Fe2—S1—Fe1 66.582 (18)
C5—Fe2—S2 153.65 (8) C13—S2—Fe2 88.06 (7)
C4—Fe2—S2 93.88 (9) C13—S2—Fe1 87.17 (7)
C6—Fe2—S2 104.35 (9) Fe2—S2—Fe1 66.715 (19)
C5—Fe2—S1 93.23 (8) C13—S3—Fe3 87.77 (7)
C4—Fe2—S1 157.61 (9) C13—S3—Fe4 87.52 (7)
C6—Fe2—S1 103.77 (8) Fe3—S3—Fe4 66.867 (19)
S2—Fe2—S1 72.92 (2) C13—S4—Fe4 87.60 (7)
C5—Fe2—Fe1 97.00 (8) C13—S4—Fe3 87.58 (6)
C4—Fe2—Fe1 100.96 (8) Fe4—S4—Fe3 67.006 (19)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5239).

References

  1. Bruker (2002). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2003). SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
  4. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  5. Galindo, A., Miguel, D. & Perez, J. (1999). Coord. Chem. Rev. 193–195, 643–690.
  6. Mathur, P., Boodida, S., Ji, R. S. & Mobin, S. M. (2009). J. Organomet. Chem. 694, 3043–3045.
  7. Ortega-Alfaro, M. C., Hernández, N., Cerna, I., López-Cortés, J. G., Gómez, E., Toscano, R. A. & Alvarez-Toledano, C. (2004). J. Organomet. Chem. 689, 885–893.
  8. Shaver, A., Fitzpatrick, P. J., Steliou, K. & Butler, I. S. (1979). J. Am. Chem. Soc. 101, 1313–1315.
  9. Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Song, L.-C. (2005). Acc. Chem. Res. 38, 21–28. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  13. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811041936/ng5239sup1.cif

e-67-m1534-sup1.cif (18KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811041936/ng5239Isup2.hkl

e-67-m1534-Isup2.hkl (251.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES