Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 12;67(Pt 11):m1540. doi: 10.1107/S1600536811041432

Poly[(μ2-1,3-di-4-pyridyl­propane)(μ3-1,3-phenyl­enediacetato)­cadmium]

Dong Liu a,*, Ni-Ya Li a
PMCID: PMC3246964  PMID: 22219784

Abstract

In the title compound, [Cd(C10H8O4)(C13H14N2)]n, two symmetry-related Cd atoms are bridged by two carboxyl­ate O atoms into a binuclear Cd2 subunit around an inversion center. The Cd atom has a distorted penta­gonal–bipyramidal environment, defined by five O atoms from three different 1,3-phenylendiacetate (1,3-pda) ligands and two N atoms from two 1,3-di-4-pyridyl­propane (bpp) ligands. Each Cd2 subunit is linked to four different Cd2 subunits by four 1,3-pda ligands and four bpp ligands, forming a two-dimensional network with rhombic grids (12.50 × 12.50 Å2) extending along the ab plane.

Related literature

For a coordination polymer with a similar structure, see: Nagaraja et al. (2010). For another compound synthesized from the same components as the title compound, see: Zhang et al. (2009). For Cd—O and Cd—N bond lengths in related structures, see: Clegg et al. (1995); Tao et al. (2000). graphic file with name e-67-m1540-scheme1.jpg

Experimental

Crystal data

  • [Cd(C10H8O4)(C13H14N2)]

  • M r = 502.84

  • Orthorhombic, Inline graphic

  • a = 22.573 (5) Å

  • b = 10.729 (2) Å

  • c = 17.024 (3) Å

  • V = 4123.0 (14) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.09 mm−1

  • T = 223 K

  • 0.25 × 0.25 × 0.20 mm

Data collection

  • Rigaku MercuryCCD area-detector diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998) T min = 0.772, T max = 0.811

  • 13963 measured reflections

  • 4693 independent reflections

  • 3718 reflections with I > 2σ(I)

  • R int = 0.044

Refinement

  • R[F 2 > 2σ(F 2)] = 0.061

  • wR(F 2) = 0.108

  • S = 1.19

  • 4693 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.51 e Å−3

Data collection: CrystalClear (Rigaku, 2001); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811041432/aa2028sup1.cif

e-67-m1540-sup1.cif (19.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811041432/aa2028Isup2.hkl

e-67-m1540-Isup2.hkl (230KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Research Start-Up Fund for New Staff of Huaibei Normal University (600581).

supplementary crystallographic information

Comment

In view of progress of crystal engineering, the appropriate choice of metal ions and organic building blocks is the most effective and facile method to assemble metal-organic compounds with various structures (Clegg et al., 1995; Nagaraja et al., 2010; Tao et al., 2000). In the past decade, rigid dicaboxylate and dipyridyl ligands have been widely employed as organic linkers to afford coordination polymers (Tao et al., 2000). Recently, flexible dicaboxylate and dipyridyl ligands have also been used to bond with metal ions (Nagaraja et al., 2010). And the complexes assembled by flexible ligands usually exhibit different structures with those of the complexes assembled by rigid ligands. In this work, we employed Cd(NO3)2 and two flexible ligands (1,3-phenylendiacetic acid, 1,3-pda, and 1,3-di-4-pyridylpropane, bpp) as our system and obtained the title compound.

As shown in Fig. 1, the symmetry-unique Cd atom is located in a pentagonal-bipyramidal environment, coordinated by five O atoms from three different 1,3-pda ligands at the equatorial sites and two N atoms from two bpp ligands at the axial sites. The Cd1–O [2.302 (3)–2.662 (3) Å] and Cd–N [2.319 (4)–2.320 (4) Å] distances are consistent with those previously observed in the related reported complexes (Clegg et al., 1995; Tao et al., 2000). Two symmetry related Cd atoms (Cd1 and Cd1i; symmetry code: (i) -x + 1, -y, -z) are bridged by two carboxylate O atoms into a binuclear Cd2 subunit around an inversion center. Each Cd2 subunit is linked to four different Cd2 subunits by four 1,3-pda ligands and four bpp ligands forming a two-dimensional (4,4) network with rhombic grids (12.50 × 12.50 Å2) extending along the ab plane (Fig. 2).

It should be noted that the complex [Cd2(1,3-pda)2(bpp)3]n (Zhang et al., 2009) was synthesized from the same components as the title compound. However, its structure is completely different.

Experimental

Cd(NO3)2.4H2O (31 mg, 0.1 mmol), 1,3-phenylenediacetic acid (19 mg, 0.1 mmol), 1,3-di-4-pyridylpropane (20 mg, 0.1 mmol), 1.5 ml of H2O and 1.5 mL of EtOH were loaded to a 10 mL Pyrex glass tube. The tube was sealed and heated in an oven to 438 K for three days, and then cooled to ambient temperature at a rate of 5 K/h to form colourless blocks of the title compound, which were washed with ethanol and dried in air. Yield: 39 mg (78% yield based on Cd). Anal. calcd. for C23H22CdN2O4: C, 54.94; H, 4.41; N, 5.57. Found: C, 55.06; H, 4.22; N, 5.61. IR (KBr, cm-1): 1606 (s), 1558 (s), 1540 (s), 1418 (m), 1395 (s), 1323 (m), 1217 (m), 1108 (m), 1068 (w), 1016 (m), 960 (s), 879 (m), 834 (s), 782 (s), 724 (s), 610 (m), 556 (s).

Refinement

All H atoms were placed in geometrically idealized positions (C–H = 0.94 Å for phenyl/pyridyl groups and C–H = 0.98 Å for methylene groups) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

Coordination environment of Cd(II) in the title compound with nonhydrogen atoms represented by thermal ellipsoids at 30% probability level, hydrogen atoms are drawn as spheres of arbitrary radius. [Symmetry codes: (i) x + 1/2, - y + 1/2, - z; (ii) - x + 1/2, y - 1/2, z; (iii) x - 1/2, - y + 1/2, - z.]

Fig. 2.

Fig. 2.

View of the two-dimensional network of the title compound extending along the ab plane.

Crystal data

[Cd(C10H8O4)(C13H14N2)] F(000) = 2032
Mr = 502.84 Dx = 1.620 Mg m3
Orthorhombic, Pbcn Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2ab Cell parameters from 9088 reflections
a = 22.573 (5) Å θ = 3.1–27.5°
b = 10.729 (2) Å µ = 1.09 mm1
c = 17.024 (3) Å T = 223 K
V = 4123.0 (14) Å3 Block, colourless
Z = 8 0.25 × 0.25 × 0.20 mm

Data collection

Rigaku MercuryCCD area-detector diffractometer 4693 independent reflections
Radiation source: fine-focus sealed tube 3718 reflections with I > 2σ(I)
graphite Rint = 0.044
ω scans θmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan (REQAB; Jacobson, 1998) h = −25→29
Tmin = 0.772, Tmax = 0.811 k = −13→12
13963 measured reflections l = −12→22

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108 H-atom parameters constrained
S = 1.19 w = 1/[σ2(Fo2) + (0.0287P)2 + 4.0115P] where P = (Fo2 + 2Fc2)/3
4693 reflections (Δ/σ)max = 0.001
271 parameters Δρmax = 0.65 e Å3
0 restraints Δρmin = −0.51 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cd1 0.434747 (13) 0.10920 (3) 0.01591 (2) 0.03461 (12)
N1 0.49203 (16) 0.2373 (3) 0.0952 (3) 0.0393 (10)
N2 0.86922 (15) 0.4861 (3) 0.0701 (2) 0.0377 (9)
O1 0.36029 (14) 0.1141 (3) 0.1164 (2) 0.0498 (9)
O2 0.35892 (13) 0.2637 (3) 0.0268 (2) 0.0445 (9)
O3 0.01992 (13) 0.4305 (3) 0.0605 (2) 0.0441 (9)
O4 −0.02352 (13) 0.2645 (3) 0.1068 (2) 0.0525 (10)
C1 0.5298 (2) 0.1956 (4) 0.1497 (3) 0.0451 (13)
H1 0.5315 0.1093 0.1589 0.054*
C2 0.5662 (2) 0.2722 (4) 0.1930 (3) 0.0436 (12)
H2 0.5921 0.2383 0.2306 0.052*
C3 0.56421 (18) 0.4001 (4) 0.1806 (3) 0.0401 (11)
C4 0.5244 (2) 0.4433 (4) 0.1251 (4) 0.0511 (14)
H4 0.5209 0.5293 0.1158 0.061*
C5 0.4898 (2) 0.3602 (4) 0.0834 (4) 0.0509 (14)
H5 0.4637 0.3915 0.0452 0.061*
C6 0.60680 (19) 0.4873 (4) 0.2199 (3) 0.0451 (13)
H6A 0.6153 0.4588 0.2734 0.054*
H6B 0.5898 0.5712 0.2227 0.054*
C7 0.6637 (2) 0.4890 (5) 0.1712 (4) 0.0548 (15)
H7A 0.6791 0.4038 0.1682 0.066*
H7B 0.6537 0.5153 0.1177 0.066*
C8 0.71221 (19) 0.5728 (5) 0.2018 (3) 0.0478 (13)
H8A 0.7004 0.6602 0.1959 0.057*
H8B 0.7187 0.5563 0.2577 0.057*
C9 0.76871 (19) 0.5497 (4) 0.1569 (3) 0.0403 (11)
C10 0.8003 (2) 0.4414 (5) 0.1711 (3) 0.0580 (15)
H10 0.7879 0.3871 0.2112 0.070*
C11 0.8494 (2) 0.4124 (5) 0.1272 (4) 0.0554 (15)
H11 0.8697 0.3378 0.1378 0.066*
C12 0.8391 (2) 0.5898 (4) 0.0562 (3) 0.0453 (13)
H12 0.8527 0.6436 0.0164 0.054*
C13 0.7890 (2) 0.6227 (4) 0.0970 (4) 0.0520 (14)
H13 0.7686 0.6959 0.0835 0.062*
C14 0.22719 (18) 0.2311 (4) 0.1101 (3) 0.0332 (10)
C15 0.21730 (19) 0.1230 (4) 0.0675 (3) 0.0370 (11)
H15 0.2495 0.0778 0.0472 0.044*
C16 0.16009 (19) 0.0817 (4) 0.0549 (3) 0.0405 (11)
H16 0.1536 0.0089 0.0255 0.049*
C17 0.1124 (2) 0.1464 (4) 0.0851 (3) 0.0419 (12)
H17 0.0738 0.1167 0.0764 0.050*
C18 0.12081 (18) 0.2547 (4) 0.1281 (3) 0.0353 (10)
C19 0.17839 (18) 0.2964 (4) 0.1378 (3) 0.0352 (10)
H19 0.1847 0.3721 0.1643 0.042*
C20 0.28893 (18) 0.2752 (4) 0.1328 (3) 0.0438 (12)
H20A 0.2946 0.2599 0.1891 0.053*
H20B 0.2911 0.3654 0.1244 0.053*
C21 0.33970 (19) 0.2138 (4) 0.0882 (4) 0.0428 (13)
C22 0.06922 (18) 0.3252 (5) 0.1653 (3) 0.0408 (11)
H22A 0.0556 0.2802 0.2121 0.049*
H22B 0.0827 0.4080 0.1819 0.049*
C23 0.01800 (18) 0.3392 (4) 0.1080 (3) 0.0356 (11)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cd1 0.02357 (18) 0.03206 (18) 0.0482 (2) 0.00165 (13) 0.00060 (14) −0.00333 (15)
N1 0.033 (2) 0.0329 (19) 0.052 (3) 0.0006 (17) −0.0019 (18) −0.0084 (18)
N2 0.0289 (18) 0.039 (2) 0.045 (3) −0.0011 (17) 0.0029 (17) −0.0001 (18)
O1 0.0412 (18) 0.0419 (18) 0.066 (3) 0.0078 (16) 0.0093 (17) 0.0030 (17)
O2 0.0383 (18) 0.0419 (18) 0.053 (3) 0.0065 (15) 0.0058 (16) −0.0010 (17)
O3 0.0397 (18) 0.0367 (16) 0.056 (3) −0.0065 (14) −0.0099 (16) 0.0124 (16)
O4 0.0305 (17) 0.0446 (18) 0.082 (3) −0.0066 (15) −0.0007 (17) 0.0119 (18)
C1 0.038 (3) 0.042 (3) 0.055 (4) 0.001 (2) −0.002 (2) −0.002 (2)
C2 0.035 (2) 0.048 (3) 0.048 (3) 0.000 (2) −0.005 (2) −0.005 (2)
C3 0.029 (2) 0.045 (3) 0.046 (3) 0.000 (2) 0.007 (2) −0.013 (2)
C4 0.045 (3) 0.032 (2) 0.077 (5) 0.001 (2) −0.007 (3) −0.005 (3)
C5 0.039 (3) 0.045 (3) 0.069 (4) 0.002 (2) −0.011 (3) −0.001 (3)
C6 0.038 (3) 0.048 (3) 0.049 (4) −0.007 (2) 0.002 (2) −0.014 (2)
C7 0.040 (3) 0.061 (3) 0.064 (4) −0.008 (3) 0.011 (3) −0.021 (3)
C8 0.040 (3) 0.052 (3) 0.052 (4) −0.006 (2) 0.008 (2) −0.012 (2)
C9 0.036 (2) 0.042 (3) 0.042 (3) −0.008 (2) 0.002 (2) −0.006 (2)
C10 0.067 (3) 0.061 (3) 0.046 (4) 0.012 (3) 0.016 (3) 0.025 (3)
C11 0.051 (3) 0.057 (3) 0.059 (4) 0.013 (3) 0.009 (3) 0.017 (3)
C12 0.049 (3) 0.035 (2) 0.051 (4) 0.003 (2) 0.018 (2) 0.007 (2)
C13 0.051 (3) 0.039 (3) 0.066 (4) 0.011 (2) 0.015 (3) 0.010 (3)
C14 0.030 (2) 0.038 (2) 0.032 (3) 0.0020 (19) 0.0026 (19) 0.0021 (19)
C15 0.036 (2) 0.032 (2) 0.042 (3) 0.0040 (19) 0.003 (2) −0.004 (2)
C16 0.040 (3) 0.036 (2) 0.045 (3) −0.004 (2) 0.000 (2) −0.005 (2)
C17 0.029 (2) 0.046 (3) 0.051 (4) −0.001 (2) −0.002 (2) 0.007 (2)
C18 0.031 (2) 0.042 (2) 0.033 (3) 0.008 (2) 0.001 (2) 0.008 (2)
C19 0.034 (2) 0.036 (2) 0.036 (3) 0.0040 (19) −0.002 (2) −0.0005 (19)
C20 0.030 (2) 0.046 (3) 0.056 (4) 0.002 (2) 0.005 (2) −0.014 (2)
C21 0.028 (2) 0.040 (3) 0.061 (4) −0.001 (2) 0.001 (2) −0.012 (2)
C22 0.029 (2) 0.055 (3) 0.038 (3) 0.012 (2) 0.003 (2) 0.005 (2)
C23 0.026 (2) 0.038 (2) 0.043 (3) 0.007 (2) 0.002 (2) −0.004 (2)

Geometric parameters (Å, °)

Cd1—O3i 2.302 (3) C7—H7B 0.9800
Cd1—N2ii 2.319 (4) C8—C9 1.507 (6)
Cd1—N1 2.320 (4) C8—H8A 0.9800
Cd1—O3iii 2.360 (3) C8—H8B 0.9800
Cd1—O2 2.390 (3) C9—C13 1.365 (7)
Cd1—O1 2.399 (3) C9—C10 1.384 (7)
N1—C5 1.334 (6) C10—C11 1.372 (7)
N1—C1 1.337 (6) C10—H10 0.9400
N2—C12 1.325 (6) C11—H11 0.9400
N2—C11 1.331 (6) C12—C13 1.373 (7)
N2—Cd1iii 2.319 (4) C12—H12 0.9400
O1—C21 1.260 (6) C13—H13 0.9400
O2—C21 1.252 (6) C14—C15 1.385 (6)
O3—C23 1.272 (5) C14—C19 1.388 (6)
O3—Cd1iv 2.302 (3) C14—C20 1.522 (6)
O3—Cd1ii 2.360 (3) C15—C16 1.382 (6)
O4—C23 1.233 (5) C15—H15 0.9400
C1—C2 1.376 (6) C16—C17 1.379 (6)
C1—H1 0.9400 C16—H16 0.9400
C2—C3 1.389 (6) C17—C18 1.387 (7)
C2—H2 0.9400 C17—H17 0.9400
C3—C4 1.383 (7) C18—C19 1.384 (6)
C3—C6 1.499 (6) C18—C22 1.526 (6)
C4—C5 1.381 (7) C19—H19 0.9400
C4—H4 0.9400 C20—C21 1.524 (6)
C5—H5 0.9400 C20—H20A 0.9800
C6—C7 1.528 (7) C20—H20B 0.9800
C6—H6A 0.9800 C22—C23 1.520 (6)
C6—H6B 0.9800 C22—H22A 0.9800
C7—C8 1.510 (6) C22—H22B 0.9800
C7—H7A 0.9800
O3i—Cd1—N2ii 97.16 (12) C7—C8—H8B 109.7
O3i—Cd1—N1 93.09 (13) H8A—C8—H8B 108.2
N2ii—Cd1—N1 169.74 (13) C13—C9—C10 116.0 (4)
O3i—Cd1—O3iii 70.69 (13) C13—C9—C8 124.7 (5)
N2ii—Cd1—O3iii 95.28 (13) C10—C9—C8 119.0 (5)
N1—Cd1—O3iii 88.49 (13) C11—C10—C9 120.8 (5)
O3i—Cd1—O2 150.50 (12) C11—C10—H10 119.6
N2ii—Cd1—O2 84.15 (12) C9—C10—H10 119.6
N1—Cd1—O2 86.72 (12) N2—C11—C10 122.3 (5)
O3iii—Cd1—O2 138.71 (11) N2—C11—H11 118.8
O3i—Cd1—O1 95.43 (11) C10—C11—H11 118.8
N2ii—Cd1—O1 90.74 (13) N2—C12—C13 123.2 (5)
N1—Cd1—O1 87.86 (13) N2—C12—H12 118.4
O3iii—Cd1—O1 165.43 (12) C13—C12—H12 118.4
O2—Cd1—O1 55.08 (12) C9—C13—C12 120.5 (5)
C5—N1—C1 117.3 (4) C9—C13—H13 119.7
C5—N1—Cd1 118.5 (3) C12—C13—H13 119.7
C1—N1—Cd1 124.1 (3) C15—C14—C19 118.2 (4)
C12—N2—C11 117.2 (4) C15—C14—C20 122.7 (4)
C12—N2—Cd1iii 125.8 (3) C19—C14—C20 118.9 (4)
C11—N2—Cd1iii 114.4 (3) C16—C15—C14 120.0 (4)
C21—O1—Cd1 90.3 (3) C16—C15—H15 120.0
C21—O2—Cd1 90.9 (3) C14—C15—H15 120.0
C23—O3—Cd1iv 150.1 (3) C17—C16—C15 120.6 (4)
C23—O3—Cd1ii 100.6 (3) C17—C16—H16 119.7
Cd1iv—O3—Cd1ii 109.31 (13) C15—C16—H16 119.7
N1—C1—C2 123.6 (4) C16—C17—C18 120.8 (4)
N1—C1—H1 118.2 C16—C17—H17 119.6
C2—C1—H1 118.2 C18—C17—H17 119.6
C1—C2—C3 119.2 (5) C19—C18—C17 117.5 (4)
C1—C2—H2 120.4 C19—C18—C22 120.5 (4)
C3—C2—H2 120.4 C17—C18—C22 122.0 (4)
C4—C3—C2 117.1 (4) C18—C19—C14 122.8 (4)
C4—C3—C6 120.8 (4) C18—C19—H19 118.6
C2—C3—C6 121.9 (5) C14—C19—H19 118.6
C5—C4—C3 120.1 (4) C14—C20—C21 115.3 (4)
C5—C4—H4 119.9 C14—C20—H20A 108.4
C3—C4—H4 119.9 C21—C20—H20A 108.4
N1—C5—C4 122.6 (5) C14—C20—H20B 108.4
N1—C5—H5 118.7 C21—C20—H20B 108.4
C4—C5—H5 118.7 H20A—C20—H20B 107.5
C3—C6—C7 107.7 (4) O2—C21—O1 123.6 (4)
C3—C6—H6A 110.2 O2—C21—C20 119.4 (4)
C7—C6—H6A 110.2 O1—C21—C20 117.0 (5)
C3—C6—H6B 110.2 O2—C21—Cd1 61.6 (2)
C7—C6—H6B 110.2 O1—C21—Cd1 62.0 (2)
H6A—C6—H6B 108.5 C20—C21—Cd1 176.5 (4)
C8—C7—C6 115.5 (4) C23—C22—C18 111.3 (4)
C8—C7—H7A 108.4 C23—C22—H22A 109.4
C6—C7—H7A 108.4 C18—C22—H22A 109.4
C8—C7—H7B 108.4 C23—C22—H22B 109.4
C6—C7—H7B 108.4 C18—C22—H22B 109.4
H7A—C7—H7B 107.5 H22A—C22—H22B 108.0
C9—C8—C7 110.0 (4) O4—C23—O3 121.1 (4)
C9—C8—H8A 109.7 O4—C23—C22 121.7 (4)
C7—C8—H8A 109.7 O3—C23—C22 117.3 (4)
C9—C8—H8B 109.7

Symmetry codes: (i) −x+1/2, y−1/2, z; (ii) x−1/2, −y+1/2, −z; (iii) x+1/2, −y+1/2, −z; (iv) −x+1/2, y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AA2028).

References

  1. Clegg, W., Cressey, J. T., McCamley, A. & Straughan, B. P. (1995). Acta Cryst. C51, 234–235.
  2. Jacobson, R. (1998). REQAB Private communication to the Rigaku Corporation, Tokyo, Japan.
  3. Nagaraja, C. M., Maji, T. K. & Rao, C. N. R. (2010). J. Mol. Struct. 976, 168–173.
  4. Rigaku (2001). CrystalClear Rigaku Corporation, Tokyo, Japan.
  5. Rigaku/MSC (2004). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  8. Tao, J., Tong, M. L. & Chen, X. M. (2000). J. Chem. Soc. Dalton Trans pp. 3669–3674.
  9. Zhang, M. L., Li, D. S., Wang, J. J., Fu, F., Du, M., Zou, K. & Gao, X. M. (2009). Dalton Trans. pp. 5355–5364. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811041432/aa2028sup1.cif

e-67-m1540-sup1.cif (19.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811041432/aa2028Isup2.hkl

e-67-m1540-Isup2.hkl (230KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES