Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 22;67(Pt 11):m1547–m1548. doi: 10.1107/S160053681104013X

Poly[[diaqua[μ5-(R,S)-2-({2-[(1,2-di­carboxyl­atoeth­yl)amino]­eth­yl}amino)­butane­dioato]cobaltate(III)sodium] di­hydrate]

Olena K Trunova a,*, Anatolij V Dudko a, Tamara O Makotryk a, Olena V Osadcha a, Vasily I Pekhnyo a, Ganna V Shovkova a
PMCID: PMC3246970  PMID: 22219790

Abstract

In the asymmetric unit of the title coordination polymer, {[CoNa(C10H12N2O8)(H2O)2]·2H2O}n, the CoII ion is coord­inated in a distorted octa­hedral environment, defined by two N atoms and four carboxyl­ate O atoms. Two CoII ions and two 2-({2-[(1,2-dicarboxyl­atoeth­yl)amino]­eth­yl}amino)­butane­dio­ate (EDDS) ligands form a dimeric complex dianion [Co2(EDDS)2]. These dimeric units are connected via Na+ ions, forming a three-dimensional polymeric structure. In the crystal, the ligand N—H groups and the coordinated and solvent water mol­ecules are involved in inter­molecular N—H⋯O and O—H⋯O hydrogen bonding, reinforcing the three-dimensional polymeric structure.

Related literature

For the synthesis and applications of EDDS and its complexes, see: Jones & Williams (2001); Kos & Leštan (2003); Mazurenko & Trunova (2001); Meers et al. (2005); Shadchina et al. (2008); Tandy et al. (2004, 2006); Vandevivere et al. (2001). For related structures, see: Horn et al. (1993); Pavelčík et al. (1980). For standard bond-length data, see: Allen et al. (1987). graphic file with name e-67-m1547-scheme1.jpg

Experimental

Crystal data

  • [CoNa(C10H12N2O8)(H2O)2]·2H2O

  • M r = 442.20

  • Orthorhombic, Inline graphic

  • a = 10.0207 (2) Å

  • b = 15.6475 (2) Å

  • c = 20.3837 (4) Å

  • V = 3196.14 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.17 mm−1

  • T = 100 K

  • 0.32 × 0.28 × 0.13 mm

Data collection

  • Bruker SMART APEXII diffractometer

  • Absorption correction: numerical (SADABS; Sheldrick, 1996) T min = 0.706, T max = 0.863

  • 11219 measured reflections

  • 3161 independent reflections

  • 2549 reflections with I > 2σ(I)

  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029

  • wR(F 2) = 0.065

  • S = 0.97

  • 3161 reflections

  • 265 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.50 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2010); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681104013X/lh5329sup1.cif

e-67-m1547-sup1.cif (24.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681104013X/lh5329Isup2.hkl

e-67-m1547-Isup2.hkl (152KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O7i 0.84 (2) 2.21 (2) 2.830 (2) 130.6 (18)
N2—H2N⋯O6ii 0.82 (2) 2.16 (2) 2.809 (2) 137.0 (18)
O9—H91⋯O11 0.84 (2) 1.92 (2) 2.741 (2) 166 (2)
O9—H92⋯O2iii 0.80 (3) 2.08 (3) 2.853 (2) 162 (3)
O10—H101⋯O8 0.83 (2) 2.18 (3) 2.972 (2) 160 (2)
O10—H102⋯O2iv 0.82 (3) 2.04 (3) 2.853 (2) 175 (3)
O11—H111⋯O1 0.79 (3) 2.26 (3) 3.004 (2) 158 (3)
O11—H112⋯O12iii 0.96 (3) 1.77 (3) 2.706 (3) 164 (2)
O12—H121⋯O1 0.77 (3) 2.05 (3) 2.793 (2) 161 (3)
O12—H122⋯O4v 0.76 (3) 2.04 (3) 2.788 (2) 167 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

The authors gratefully acknowledge the support of this work by the Ukrainian National Academy of Sciences.

supplementary crystallographic information

Comment

Ethylenediamine-N,N'-disuccinic acid and its coordination compounds with different 3 d-metals have attracted much interest due to their potential and practical applications in biochemistry. EDDS can be applied for some technical purposes: for the extraction of heavy metals from soils as an efficient biodegradable chelating agents (Tandy et al., 2004; Tandy et al., 2006), in replacement of edta in soil washing and phytoextraction (Vandevivere et al., 2001; Kos & Leštan, 2003; Meers et al. 2005) or for radionuclide decontamination in the pulp and paper-making industry (Jones & Williams, 2001). Biologically active complexes are widely used in plant growing and animal industries (Mazurenko & Trunova 2001; Shadchina et al. 2008). The biodegradable strong transition metal chelant [S,S] stereoisomer of ethylenediamine disuccinate was investigated for its applicability for the washing extraction of heavy metals from soil, sewage sludge, and harbor sediment (Vandevivere et al., 2001).

In the course of our investigations the title compound was prepared and structurally characterized. The asymmetric unit of the title compound is shown in Fig. 1. The CoII ion forms a distorted octahedral [CoN2O4] environment defined by sets of three five-membered (Co1/O1/C1/C2/N1;/Co1/N1/C3/C4/N2; Co1/N2/C5/C6/O3) and a six-membered (Co1/N2/C5/C7/C8/O5) metallocycle. The sixth O donor from a centrosymmetrically related [Co(edds)]- complex ion forms a 12-membered macrocycle, as a result a dimeric unit is produced (Fig. 2). The Co-O, Co-N, Na-O bond lengths are in normal ranges and have a good correlation with literature data (Allen et al., 1987; Pavelčík et al., 1980; Horn et al., 1993). The Co1···Co1(-x, -y+1, -z) distance is 5.265 Å, which excludes the possibility of any interaction between the ions. In the crystal the compound exists as a polymeric structure, in which the monomers are interconnected by Na+ ions (Fig. 2). The Na+ ions are five-coordinate, with a distorted trigonal-bipyramidal coordination geometry formed by oxygen atoms, two of which belong to water molecules and the other three to oxygen atoms of the ligand which do not take part in the coordination of the Coii ion. Intermolecular N—H···O and O—H···O hydrogen bonds in the crystal structure form a three-dimensional supramolecular network which stabilizes the structure (Fig.3, Table 1).

Experimental

A mixture of CoCl2.6H2O (2.38 g, 10 mmol) and EDDS (2.92 g, 10 mmol) were dissolved in distilled water (10 ml). The pH was then adjusted to 4.5 by concentrated NaOH solution. Reaction mixture was refluxed with stirring for 24 h. After cooling to room temperature diethyl ether was added into the solution giving a powder crude product. Precipitate was filtered of and washed with methanol for several times (yield 86%). The resulting residue was dissolved in water and was stored in a dark place for slow evaporation. After 4 days suitable crystals for X-ray data collection were obtained.

Refinement

H atoms bonded to O and N atoms were located in a difference Fourier map. Their positions were refined freely whereas thermal parameters were fixed to Uiso(H) = 1.5Ueq(N,O). To avoid short contacts between H91 and H112 they were refined with distance restraint (H···H= 2.3 ±0.02 Å). H atoms bonded to C were positioned geometrically and refined using a riding model with C—H = 0.99 Å for CH2 and C—H = 1.00 Å for CH with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound with ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Part of the polymeric structure of the title compound formed by sodium ions.

Fig. 3.

Fig. 3.

Crystal packing of title compound, projected along the a axis. Dashed lines indicate hydrogen bonds.

Crystal data

[CoNa(C10H12N2O8)(H2O)2]·2H2O F(000) = 1824
Mr = 442.20 Dx = 1.838 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 4049 reflections
a = 10.0207 (2) Å θ = 2.6–26.1°
b = 15.6475 (2) Å µ = 1.17 mm1
c = 20.3837 (4) Å T = 100 K
V = 3196.14 (10) Å3 Diamond, violet
Z = 8 0.32 × 0.28 × 0.13 mm

Data collection

Bruker SMART APEXII diffractometer 3161 independent reflections
Radiation source: fine-focus sealed tube 2549 reflections with I > 2σ(I)
graphite Rint = 0.042
φ and ω scans θmax = 26.1°, θmin = 2.0°
Absorption correction: numerical (SADABS; Sheldrick, 1996) h = −7→12
Tmin = 0.706, Tmax = 0.863 k = −19→19
11219 measured reflections l = −25→21

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065 H atoms treated by a mixture of independent and constrained refinement
S = 0.97 w = 1/[σ2(Fo2) + (0.0324P)2] where P = (Fo2 + 2Fc2)/3
3161 reflections (Δ/σ)max < 0.001
265 parameters Δρmax = 0.34 e Å3
1 restraint Δρmin = −0.50 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Co1 0.09689 (3) 0.387117 (14) 0.083088 (13) 0.00826 (9)
Na1 0.39217 (9) 0.53940 (5) 0.21505 (4) 0.0178 (2)
C1 0.1871 (2) 0.38312 (11) −0.04223 (10) 0.0104 (4)
C2 0.0531 (2) 0.33752 (11) −0.04526 (9) 0.0100 (4)
H2 0.0712 0.2749 −0.0414 0.012*
C3 −0.1234 (2) 0.29948 (11) 0.03843 (10) 0.0120 (5)
H3A −0.0830 0.2418 0.0400 0.014*
H3B −0.2034 0.2975 0.0099 0.014*
C4 −0.1601 (2) 0.32957 (12) 0.10675 (10) 0.0130 (5)
H4A −0.2192 0.3801 0.1038 0.016*
H4B −0.2088 0.2838 0.1302 0.016*
C5 0.0280 (2) 0.28136 (11) 0.18052 (10) 0.0111 (4)
H5 −0.0412 0.2455 0.2027 0.013*
C6 0.1054 (2) 0.22824 (12) 0.13122 (10) 0.0118 (4)
C7 0.1248 (2) 0.31881 (11) 0.23126 (10) 0.0123 (5)
H7A 0.0714 0.3483 0.2653 0.015*
H7B 0.1714 0.2707 0.2529 0.015*
C8 0.2302 (2) 0.38128 (11) 0.20641 (10) 0.0124 (5)
C9 0.0287 (2) 0.55445 (11) 0.13005 (10) 0.0106 (4)
C10 0.0175 (2) 0.64820 (11) 0.11074 (10) 0.0111 (4)
H10A 0.1083 0.6729 0.1082 0.013*
H10B −0.0317 0.6792 0.1455 0.013*
N1 −0.02558 (17) 0.36314 (9) 0.01328 (8) 0.0087 (4)
H1N −0.065 (2) 0.4093 (12) 0.0043 (10) 0.010*
N2 −0.03629 (17) 0.35219 (10) 0.14370 (8) 0.0102 (4)
H2N −0.057 (2) 0.3904 (12) 0.1691 (11) 0.012*
O1 0.22354 (14) 0.41008 (8) 0.01494 (6) 0.0105 (3)
O2 0.25654 (16) 0.39053 (8) −0.09163 (7) 0.0163 (3)
O3 0.15026 (14) 0.27071 (7) 0.08149 (6) 0.0113 (3)
O4 0.12621 (15) 0.15144 (8) 0.14003 (7) 0.0158 (3)
O5 0.22710 (14) 0.41130 (8) 0.14795 (7) 0.0119 (3)
O6 0.31703 (15) 0.40383 (8) 0.24573 (7) 0.0184 (4)
O7 0.04285 (14) 0.50388 (7) 0.08043 (6) 0.0107 (3)
O8 0.02390 (15) 0.53288 (8) 0.18835 (7) 0.0156 (3)
O9 0.56412 (18) 0.49111 (10) 0.15130 (8) 0.0245 (4)
H91 0.537 (3) 0.4471 (15) 0.1319 (11) 0.037*
H92 0.605 (3) 0.5215 (16) 0.1272 (14) 0.037*
O10 0.22692 (18) 0.62299 (10) 0.26905 (8) 0.0214 (4)
H101 0.162 (3) 0.5949 (15) 0.2558 (12) 0.032*
H102 0.229 (3) 0.6165 (15) 0.3088 (13) 0.032*
O11 0.49078 (18) 0.36011 (9) 0.06961 (9) 0.0253 (4)
H111 0.415 (3) 0.3726 (17) 0.0657 (14) 0.038*
H112 0.539 (3) 0.3836 (15) 0.0329 (11) 0.038*
O12 0.33610 (19) 0.57331 (10) 0.01853 (8) 0.0241 (4)
H121 0.320 (3) 0.5253 (16) 0.0228 (13) 0.036*
H122 0.348 (3) 0.5872 (17) 0.0539 (14) 0.036*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.00957 (17) 0.00764 (12) 0.00757 (14) 0.00002 (11) −0.00016 (12) 0.00084 (11)
Na1 0.0234 (5) 0.0147 (4) 0.0153 (4) 0.0012 (4) 0.0001 (4) 0.0032 (3)
C1 0.0113 (12) 0.0080 (8) 0.0119 (10) 0.0028 (8) −0.0009 (9) 0.0029 (8)
C2 0.0141 (12) 0.0078 (8) 0.0082 (10) 0.0000 (8) 0.0013 (9) −0.0007 (8)
C3 0.0110 (12) 0.0123 (8) 0.0126 (11) −0.0031 (8) −0.0009 (9) 0.0017 (8)
C4 0.0081 (12) 0.0163 (9) 0.0145 (11) −0.0004 (9) −0.0002 (9) 0.0017 (8)
C5 0.0118 (12) 0.0109 (8) 0.0105 (10) 0.0002 (8) −0.0009 (9) 0.0036 (8)
C6 0.0103 (12) 0.0137 (9) 0.0114 (10) −0.0008 (9) −0.0040 (9) 0.0008 (8)
C7 0.0142 (13) 0.0125 (9) 0.0103 (10) 0.0026 (9) −0.0011 (9) −0.0008 (8)
C8 0.0142 (13) 0.0097 (8) 0.0134 (11) 0.0043 (8) −0.0005 (10) 0.0002 (8)
C9 0.0048 (12) 0.0128 (9) 0.0143 (11) −0.0016 (8) −0.0008 (9) 0.0000 (8)
C10 0.0135 (13) 0.0106 (9) 0.0092 (10) −0.0004 (8) 0.0006 (9) −0.0007 (8)
N1 0.0099 (10) 0.0072 (7) 0.0089 (9) 0.0014 (7) −0.0001 (7) 0.0011 (7)
N2 0.0103 (10) 0.0099 (7) 0.0104 (9) 0.0017 (7) −0.0001 (8) −0.0010 (7)
O1 0.0091 (8) 0.0117 (6) 0.0107 (7) −0.0014 (6) 0.0005 (6) 0.0008 (6)
O2 0.0159 (9) 0.0223 (7) 0.0107 (8) −0.0029 (6) 0.0031 (7) −0.0004 (6)
O3 0.0126 (8) 0.0099 (6) 0.0114 (7) 0.0018 (6) 0.0007 (6) 0.0014 (6)
O4 0.0241 (10) 0.0095 (6) 0.0138 (8) 0.0018 (6) −0.0011 (7) 0.0015 (6)
O5 0.0116 (9) 0.0137 (6) 0.0103 (7) −0.0014 (6) −0.0021 (6) 0.0013 (6)
O6 0.0203 (9) 0.0198 (7) 0.0153 (8) −0.0051 (6) −0.0078 (7) 0.0024 (6)
O7 0.0138 (8) 0.0086 (6) 0.0097 (7) 0.0011 (6) −0.0005 (6) 0.0008 (6)
O8 0.0229 (10) 0.0156 (6) 0.0083 (7) 0.0033 (6) 0.0017 (7) 0.0016 (6)
O9 0.0310 (12) 0.0211 (8) 0.0214 (9) −0.0064 (7) 0.0051 (8) −0.0005 (7)
O10 0.0232 (10) 0.0246 (8) 0.0163 (8) −0.0030 (7) −0.0002 (8) 0.0023 (7)
O11 0.0174 (10) 0.0180 (7) 0.0405 (11) 0.0026 (7) 0.0020 (9) −0.0021 (7)
O12 0.0380 (12) 0.0140 (7) 0.0202 (9) −0.0057 (7) −0.0033 (9) 0.0003 (7)

Geometric parameters (Å, °)

Co1—O5 1.8957 (14) C5—C7 1.534 (3)
Co1—O3 1.8987 (12) C5—H5 1.0000
Co1—N2 1.8990 (17) C6—O4 1.233 (2)
Co1—O7 1.9064 (12) C6—O3 1.293 (2)
Co1—O1 1.9155 (13) C7—C8 1.526 (3)
Co1—N1 1.9161 (17) C7—H7A 0.9900
Na1—O9 2.2866 (19) C7—H7B 0.9900
Na1—O4i 2.3336 (15) C8—O6 1.234 (2)
Na1—O6 2.3363 (15) C8—O5 1.281 (2)
Na1—O8ii 2.3728 (16) C9—O8 1.236 (2)
Na1—O10 2.3800 (19) C9—O7 1.292 (2)
Na1—O5 2.9368 (15) C9—C10 1.523 (2)
Na1—H101 2.60 (3) C10—C2iii 1.527 (3)
C1—O2 1.229 (2) C10—H10A 0.9900
C1—O1 1.292 (2) C10—H10B 0.9900
C1—C2 1.522 (3) N1—H1N 0.84 (2)
C2—N1 1.485 (2) N2—H2N 0.82 (2)
C2—C10iii 1.527 (3) O4—Na1iv 2.3336 (15)
C2—H2 1.0000 O8—Na1v 2.3728 (16)
C3—N1 1.489 (2) O9—H91 0.84 (2)
C3—C4 1.515 (3) O9—H92 0.80 (3)
C3—H3A 0.9900 O10—H101 0.83 (2)
C3—H3B 0.9900 O10—H102 0.82 (3)
C4—N2 1.494 (3) O11—H111 0.79 (3)
C4—H4A 0.9900 O11—H112 0.96 (3)
C4—H4B 0.9900 O12—H121 0.77 (3)
C5—N2 1.486 (2) O12—H122 0.76 (3)
C5—C6 1.517 (3)
O5—Co1—O3 90.55 (6) N2—C5—C6 107.20 (16)
O5—Co1—N2 95.02 (7) N2—C5—C7 109.25 (15)
O3—Co1—N2 86.16 (6) C6—C5—C7 109.43 (17)
O5—Co1—O7 91.37 (6) N2—C5—H5 110.3
O3—Co1—O7 177.39 (6) C6—C5—H5 110.3
N2—Co1—O7 95.43 (6) C7—C5—H5 110.3
O5—Co1—O1 90.70 (6) O4—C6—O3 123.80 (19)
O3—Co1—O1 88.91 (6) O4—C6—C5 121.60 (18)
N2—Co1—O1 172.47 (6) O3—C6—C5 114.56 (15)
O7—Co1—O1 89.30 (5) C8—C7—C5 117.30 (17)
O5—Co1—N1 176.22 (7) C8—C7—H7A 108.0
O3—Co1—N1 88.84 (6) C5—C7—H7A 108.0
N2—Co1—N1 88.66 (7) C8—C7—H7B 108.0
O7—Co1—N1 89.12 (6) C5—C7—H7B 108.0
O1—Co1—N1 85.56 (7) H7A—C7—H7B 107.2
O9—Na1—O4i 86.29 (6) O6—C8—O5 121.08 (19)
O9—Na1—O6 95.44 (6) O6—C8—C7 117.10 (18)
O4i—Na1—O6 146.32 (6) O5—C8—C7 121.79 (18)
O9—Na1—O8ii 92.19 (6) O8—C9—O7 126.13 (17)
O4i—Na1—O8ii 128.32 (6) O8—C9—C10 120.57 (17)
O6—Na1—O8ii 85.30 (5) O7—C9—C10 113.31 (16)
O9—Na1—O10 165.64 (6) C9—C10—C2iii 113.63 (15)
O4i—Na1—O10 80.52 (6) C9—C10—H10A 108.8
O6—Na1—O10 98.69 (6) C2iii—C10—H10A 108.8
O8ii—Na1—O10 91.54 (6) C9—C10—H10B 108.8
O9—Na1—O5 86.23 (5) C2iii—C10—H10B 108.8
O4i—Na1—O5 99.39 (5) H10A—C10—H10B 107.7
O6—Na1—O5 47.42 (5) C2—N1—C3 116.47 (14)
O8ii—Na1—O5 132.10 (5) C2—N1—Co1 108.02 (12)
O10—Na1—O5 101.46 (6) C3—N1—Co1 107.29 (12)
O9—Na1—H101 163.8 (6) C2—N1—H1N 107.7 (15)
O4i—Na1—H101 83.6 (5) C3—N1—H1N 109.9 (14)
O6—Na1—H101 86.1 (5) Co1—N1—H1N 107.0 (14)
O8ii—Na1—H101 104.0 (6) C5—N2—C4 115.98 (15)
O10—Na1—H101 18.5 (5) C5—N2—Co1 103.81 (12)
O5—Na1—H101 83.0 (6) C4—N2—Co1 108.90 (13)
O2—C1—O1 123.23 (19) C5—N2—H2N 109.7 (15)
O2—C1—C2 120.69 (18) C4—N2—H2N 106.2 (16)
O1—C1—C2 116.04 (17) Co1—N2—H2N 112.4 (15)
N1—C2—C1 108.02 (15) C1—O1—Co1 113.93 (13)
N1—C2—C10iii 114.61 (16) C6—O3—Co1 112.44 (12)
C1—C2—C10iii 112.07 (16) C6—O4—Na1iv 144.52 (14)
N1—C2—H2 107.3 C8—O5—Co1 126.31 (13)
C1—C2—H2 107.3 C8—O5—Na1 78.66 (11)
C10iii—C2—H2 107.3 Co1—O5—Na1 148.08 (6)
N1—C3—C4 105.57 (15) C8—O6—Na1 108.23 (12)
N1—C3—H3A 110.6 C9—O7—Co1 126.58 (12)
C4—C3—H3A 110.6 C9—O8—Na1v 143.85 (14)
N1—C3—H3B 110.6 Na1—O9—H91 107.0 (17)
C4—C3—H3B 110.6 Na1—O9—H92 122.9 (19)
H3A—C3—H3B 108.8 H91—O9—H92 111 (2)
N2—C4—C3 109.59 (17) Na1—O10—H101 95.7 (18)
N2—C4—H4A 109.8 Na1—O10—H102 112.1 (18)
C3—C4—H4A 109.8 H101—O10—H102 106 (3)
N2—C4—H4B 109.8 H111—O11—H112 108 (3)
C3—C4—H4B 109.8 H121—O12—H122 102 (3)
H4A—C4—H4B 108.2
O2—C1—C2—N1 −161.41 (17) N1—Co1—O1—C1 −14.24 (13)
O1—C1—C2—N1 20.9 (2) O4—C6—O3—Co1 179.19 (16)
O2—C1—C2—C10iii −34.2 (2) C5—C6—O3—Co1 −3.1 (2)
O1—C1—C2—C10iii 148.05 (16) O5—Co1—O3—C6 76.97 (13)
N1—C3—C4—N2 −46.74 (19) N2—Co1—O3—C6 −18.03 (14)
N2—C5—C6—O4 −152.14 (19) O1—Co1—O3—C6 167.66 (13)
C7—C5—C6—O4 89.5 (2) N1—Co1—O3—C6 −106.76 (14)
N2—C5—C6—O3 30.1 (2) O3—C6—O4—Na1iv 169.60 (14)
C7—C5—C6—O3 −88.3 (2) C5—C6—O4—Na1iv −7.9 (4)
N2—C5—C7—C8 −53.7 (2) O6—C8—O5—Co1 −177.17 (13)
C6—C5—C7—C8 63.4 (2) C7—C8—O5—Co1 0.7 (3)
C5—C7—C8—O6 −172.07 (17) O6—C8—O5—Na1 −19.22 (17)
C5—C7—C8—O5 10.0 (3) C7—C8—O5—Na1 158.64 (18)
O8—C9—C10—C2iii −146.6 (2) O3—Co1—O5—C8 −64.38 (16)
O7—C9—C10—C2iii 33.4 (2) N2—Co1—O5—C8 21.81 (16)
C1—C2—N1—C3 −150.78 (16) O7—Co1—O5—C8 117.39 (15)
C10iii—C2—N1—C3 83.5 (2) O1—Co1—O5—C8 −153.29 (15)
C1—C2—N1—Co1 −30.05 (16) O3—Co1—O5—Na1 159.72 (13)
C10iii—C2—N1—Co1 −155.76 (12) N2—Co1—O5—Na1 −114.09 (13)
C4—C3—N1—C2 164.59 (16) O7—Co1—O5—Na1 −18.51 (13)
C4—C3—N1—Co1 43.47 (17) O1—Co1—O5—Na1 70.80 (13)
O3—Co1—N1—C2 −64.06 (11) O9—Na1—O5—C8 112.60 (12)
N2—Co1—N1—C2 −150.24 (12) O4i—Na1—O5—C8 −161.79 (12)
O7—Co1—N1—C2 114.30 (11) O6—Na1—O5—C8 11.67 (11)
O1—Co1—N1—C2 24.94 (11) O8ii—Na1—O5—C8 23.07 (14)
O3—Co1—N1—C3 62.25 (12) O10—Na1—O5—C8 −79.65 (12)
N2—Co1—N1—C3 −23.93 (12) O9—Na1—O5—Co1 −102.28 (13)
O7—Co1—N1—C3 −119.39 (12) O4i—Na1—O5—Co1 −16.67 (14)
O1—Co1—N1—C3 151.24 (12) O6—Na1—O5—Co1 156.79 (15)
C6—C5—N2—C4 78.7 (2) O8ii—Na1—O5—Co1 168.18 (11)
C7—C5—N2—C4 −162.84 (17) O10—Na1—O5—Co1 65.47 (14)
C6—C5—N2—Co1 −40.72 (17) O5—C8—O6—Na1 25.3 (2)
C7—C5—N2—Co1 77.76 (16) C7—C8—O6—Na1 −152.67 (13)
C3—C4—N2—C5 −88.7 (2) O9—Na1—O6—C8 −92.30 (14)
C3—C4—N2—Co1 27.91 (17) O4i—Na1—O6—C8 −0.8 (2)
O5—Co1—N2—C5 −57.29 (12) O8ii—Na1—O6—C8 175.94 (14)
O3—Co1—N2—C5 32.93 (12) O10—Na1—O6—C8 85.10 (14)
O7—Co1—N2—C5 −149.15 (12) O5—Na1—O6—C8 −12.52 (12)
N1—Co1—N2—C5 121.86 (12) O8—C9—O7—Co1 −14.0 (3)
O5—Co1—N2—C4 178.59 (11) C10—C9—O7—Co1 165.99 (13)
O3—Co1—N2—C4 −91.20 (12) O5—Co1—O7—C9 −40.90 (16)
O7—Co1—N2—C4 86.72 (12) N2—Co1—O7—C9 54.28 (17)
O2—C1—O1—Co1 −178.47 (14) O1—Co1—O7—C9 −131.58 (16)
C2—C1—O1—Co1 −0.80 (19) N1—Co1—O7—C9 142.85 (17)
O5—Co1—O1—C1 165.23 (12) O7—C9—O8—Na1v −123.2 (2)
O3—Co1—O1—C1 74.69 (13) C10—C9—O8—Na1v 56.8 (3)
O7—Co1—O1—C1 −103.41 (13)

Symmetry codes: (i) −x+1/2, y+1/2, z; (ii) x+1/2, y, −z+1/2; (iii) −x, −y+1, −z; (iv) −x+1/2, y−1/2, z; (v) x−1/2, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O7iii 0.84 (2) 2.21 (2) 2.830 (2) 130.6 (18)
N2—H2N···O6v 0.82 (2) 2.16 (2) 2.809 (2) 137.0 (18)
O9—H91···O11 0.84 (2) 1.92 (2) 2.741 (2) 166 (2)
O9—H92···O2vi 0.80 (3) 2.08 (3) 2.853 (2) 162 (3)
O10—H101···O8 0.83 (2) 2.18 (3) 2.972 (2) 160 (2)
O10—H102···O2vii 0.82 (3) 2.04 (3) 2.853 (2) 175 (3)
O11—H111···O1 0.79 (3) 2.26 (3) 3.004 (2) 158 (3)
O11—H112···O12vi 0.96 (3) 1.77 (3) 2.706 (3) 164 (2)
O12—H121···O1 0.77 (3) 2.05 (3) 2.793 (2) 161 (3)
O12—H122···O4i 0.76 (3) 2.04 (3) 2.788 (2) 167 (3)

Symmetry codes: (iii) −x, −y+1, −z; (v) x−1/2, y, −z+1/2; (vi) −x+1, −y+1, −z; (vii) −x+1/2, −y+1, z+1/2; (i) −x+1/2, y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5329).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Brandenburg, K. & Putz, H. (2010). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Horn, E., Snow, M. R. & Tiekink, E. R. T. (1993). Z. Kristallogr. 205, 140–142.
  5. Jones, P. & Williams, D. R. (2001). Int. J. Environ. Anal. Chem. 81, 73–88.
  6. Kos, B. & Leštan, D. (2003). Plant Soil, 253, 403–411.
  7. Mazurenko, E. A. & Trunova, O. K. (2001). Ukr. J. Chem. 67, 24–32.
  8. Meers, E., Ruttens, A., Hopgood, M. J., Samson, D. & Tack, F. M. G. (2005). Chemosphere, 58, 1011–1022. [DOI] [PubMed]
  9. Pavelčík, F., Garaj, J. & Majer, J. (1980). Acta Cryst. B36, 2152–2154.
  10. Shadchina, T. M., Pryadkina, G. O. & Trunova, O. K. (2008). Physiology Biochem. Cultivated Plants, 40, 435–440.
  11. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Tandy, S., Ammann, A., Schulin, R. & Nowack, B. (2006). Environ. Pollut. 142, 191–199. [DOI] [PubMed]
  14. Tandy, S., Bossart, K., Mueller, R., Ritschel, J., Hauser, L., Schulin, R. & Nowack, B. (2004). Environ. Sci. Technol. 38, 937–944. [DOI] [PubMed]
  15. Vandevivere, P. C., Hammes, F., Verstraete, W., Feijtel, T. C. & Schowanek, D. R. (2001). J. Environ. Eng. 127, 802–811. [DOI] [PubMed]
  16. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681104013X/lh5329sup1.cif

e-67-m1547-sup1.cif (24.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681104013X/lh5329Isup2.hkl

e-67-m1547-Isup2.hkl (152KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES