Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 22;67(Pt 11):m1555. doi: 10.1107/S1600536811042115

Dichlorido{N-[1-(pyrazin-2-yl)ethyl­idene-κN 1]ethane-1,2-diamine-κ2 N,N′}zinc

Jia-Cheng Liu a,*, Meng Li a, Abedelwahed Saeed Mohammed Omer a, Yun Wei a, Guo-Zhe Guo a
PMCID: PMC3246976  PMID: 22219796

Abstract

The ZnII atom in the title complex, [ZnCl2(C8H12N4)], is coordinated by two Cl atoms and three N atoms of the N-[1-(pyrazin-2-yl)ethyl­idene]ethane-1,2-diamine ligand, and displays a distorted square-pyramidal geometry with the apical position occupied by a Cl atom. In the crystal, inter­molecular N—H⋯Cl and C—H⋯Cl hydrogen bonds link the mol­ecules into a three-dimensional framework.

Related literature

For the use of dinucleating N-heterocyclic ligands in crystal engineering, see: Pascu et al. (2004). For metal complexes of Schiff base ligands in coordination chemictry, see: Coles et al. (1998); Gourbatsis et al. (1999).graphic file with name e-67-m1555-scheme1.jpg

Experimental

Crystal data

  • [ZnCl2(C8H12N4)]

  • M r = 300.49

  • Triclinic, Inline graphic

  • a = 7.106 (5) Å

  • b = 8.976 (6) Å

  • c = 10.225 (6) Å

  • α = 69.566 (5)°

  • β = 73.434 (5)°

  • γ = 83.056 (5)°

  • V = 585.6 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.53 mm−1

  • T = 296 K

  • 0.23 × 0.21 × 0.19 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.594, T max = 0.646

  • 4159 measured reflections

  • 2129 independent reflections

  • 1790 reflections with I > 2σ(I)

  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.071

  • S = 1.08

  • 2129 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.38 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811042115/bh2386sup1.cif

e-67-m1555-sup1.cif (17.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811042115/bh2386Isup2.hkl

e-67-m1555-Isup2.hkl (104.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4B⋯Cl1i 0.90 2.77 3.531 (4) 143
N4—H4A⋯Cl2ii 0.90 2.81 3.534 (3) 139
C2—H2⋯Cl2iii 0.93 2.81 3.672 (4) 155
C3—H3⋯Cl2iv 0.93 2.80 3.704 (4) 164
C6—H6B⋯Cl1i 0.97 2.84 3.550 (4) 131

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

This work was supported by the NSFC (No. 20871099) and the Natural Science Foundation of Gansu (No. 0710RJZA113).

supplementary crystallographic information

Comment

Pyrazines themselves are well known dinucleating ligands and, as many dinucleating N-heterocyclic ligands, have attracted much attention from crystal engineers (Pascu et al., 2004). On the other hand, Schiff base ligands have played an integral role in the development of coordination chemistry since the late 19 th century. The finding that metal complexes of these ligands are ubiquitous reflects their facile synthesis, wide applications and the accessibility to diverse structural modifications (Coles et al., 1998; Gourbatsis et al., 1999). Herein, we report on the synthesis of an asymmetric Schiff base using 2-acetylpyrazine as precursor and we report its ZnII complex.

The molecular structure of the complex [ZnCl2(C8H12N4)] is shown in Fig. 1. The complex is a mononuclear, five-coordinate species. The central zinc ion is coordinated by two chloride and three N atoms. The Schiff base acts as a tridentate chelating ligand, giving two five-membered rings. The coordination geometry about zinc(II) is distorted square-pyramidal. Atoms N1, N3, N4 and Cl1 form the basal plane and atom Cl2 is in apical position. The effect of the chelate rings is clearly observed in the N1—Zn1—N3 and N3—Zn1—N4 bond angles, which deviate by 16.7 and 12.0°, respectively, from the ideal value (90°). As a result, the N1—Zn1—N4 axis is not linear [145.43 (10)°], significantly deviated from the ideal value of 180°. The Zn—N distances in the basal plane are 2.122 (3), 2.245 (2), and 2.117 (3) Å.

In the crystal packing (Fig. 2), N—H···Cl and C—H···Cl hydrogen bonds link the molecules into sheets, which interact weakly to form a 3D framework.

Experimental

To 0.2 mmol (0.0328 g) of N-[1-(pyrazin-2-yl)ethylidene]ethane-1,2-diamine in 15 ml of methanol was added 0.2 mmol (0.0272 g) of ZnCl2 in 10 ml of methanol, and the mixture was stirred at 333 K for 0.5 h. Upon free evaporation, single crystals suitable for XRD analysis were collected by filtration within two weeks (yield: 69%).

Refinement

All H atoms were included in calculated positions, with C—H distances ranging from 0.93 to 0.97 Å, and N—H distances of 0.90 Å. They were refined in the riding-model approximation, with Uiso(H) = 1.2Ueq(carrier C,N) or Uiso(H) = 1.5Ueq(C methyl).

Figures

Fig. 1.

Fig. 1.

The structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed along the b axis. Hydrogen bonds are shown as dashed lines.

Crystal data

[ZnCl2(C8H12N4)] Z = 2
Mr = 300.49 F(000) = 304
Triclinic, P1 Dx = 1.704 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.106 (5) Å Cell parameters from 1862 reflections
b = 8.976 (6) Å θ = 2.2–26.4°
c = 10.225 (6) Å µ = 2.53 mm1
α = 69.566 (5)° T = 296 K
β = 73.434 (5)° Block, colourless
γ = 83.056 (5)° 0.23 × 0.21 × 0.19 mm
V = 585.6 (6) Å3

Data collection

Bruker APEXII CCD diffractometer 2129 independent reflections
Radiation source: fine-focus sealed tube 1790 reflections with I > 2σ(I)
graphite Rint = 0.027
φ and ω scans θmax = 25.5°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −8→8
Tmin = 0.594, Tmax = 0.646 k = −9→10
4159 measured reflections l = −12→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071 H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.032P)2] where P = (Fo2 + 2Fc2)/3
2129 reflections (Δ/σ)max = 0.001
137 parameters Δρmax = 0.31 e Å3
0 restraints Δρmin = −0.38 e Å3
0 constraints

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn1 0.31700 (5) 0.62496 (4) 0.82328 (3) 0.03108 (13)
C1 0.6706 (5) 0.5945 (4) 0.5517 (3) 0.0429 (8)
H1 0.6344 0.4897 0.5783 0.051*
C2 0.8103 (5) 0.6600 (4) 0.4227 (3) 0.0478 (9)
H2 0.8639 0.5976 0.3645 0.057*
C3 0.7916 (4) 0.8893 (4) 0.4693 (3) 0.0348 (7)
H3 0.8318 0.9926 0.4442 0.042*
C4 0.6524 (4) 0.8264 (3) 0.5984 (3) 0.0271 (6)
C5 0.5617 (4) 0.9145 (3) 0.7031 (3) 0.0281 (6)
C6 0.3104 (4) 0.9118 (3) 0.9186 (3) 0.0343 (7)
H6A 0.2748 1.0230 0.8787 0.041*
H6B 0.3952 0.9032 0.9804 0.041*
C7 0.1281 (5) 0.8162 (4) 1.0050 (3) 0.0425 (8)
H7A 0.0788 0.8336 1.0974 0.051*
H7B 0.0269 0.8504 0.9533 0.051*
C8 0.6519 (5) 1.0628 (4) 0.6874 (4) 0.0496 (9)
H8A 0.5599 1.1201 0.7425 0.074*
H8B 0.6865 1.1277 0.5874 0.074*
H8C 0.7678 1.0363 0.7222 0.074*
Cl1 0.37658 (13) 0.35645 (9) 0.88661 (9) 0.0501 (2)
Cl2 0.07883 (12) 0.68599 (9) 0.70197 (9) 0.0431 (2)
N1 0.5878 (3) 0.6794 (3) 0.6377 (2) 0.0322 (6)
N2 0.8705 (4) 0.8072 (3) 0.3791 (3) 0.0438 (7)
N3 0.4131 (3) 0.8493 (3) 0.8015 (2) 0.0285 (5)
N4 0.1750 (4) 0.6466 (3) 1.0283 (3) 0.0460 (7)
H4A 0.0645 0.5900 1.0682 0.055*
H4B 0.2545 0.6102 1.0879 0.055*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.0306 (2) 0.0258 (2) 0.0363 (2) −0.00363 (14) −0.00618 (14) −0.01066 (15)
C1 0.0433 (19) 0.0373 (19) 0.054 (2) −0.0035 (15) −0.0081 (16) −0.0252 (16)
C2 0.047 (2) 0.057 (2) 0.047 (2) 0.0034 (17) −0.0056 (16) −0.0320 (18)
C3 0.0337 (17) 0.0355 (18) 0.0349 (16) −0.0028 (13) −0.0075 (13) −0.0118 (14)
C4 0.0207 (14) 0.0295 (16) 0.0344 (16) 0.0014 (12) −0.0101 (12) −0.0130 (13)
C5 0.0256 (15) 0.0276 (16) 0.0315 (15) 0.0008 (12) −0.0089 (12) −0.0096 (13)
C6 0.0387 (17) 0.0318 (17) 0.0327 (16) −0.0005 (13) −0.0035 (13) −0.0158 (13)
C7 0.0397 (19) 0.044 (2) 0.0408 (18) −0.0042 (15) 0.0049 (14) −0.0212 (16)
C8 0.049 (2) 0.046 (2) 0.055 (2) −0.0185 (17) 0.0033 (17) −0.0267 (17)
Cl1 0.0558 (6) 0.0267 (4) 0.0641 (6) 0.0026 (4) −0.0167 (4) −0.0108 (4)
Cl2 0.0419 (5) 0.0377 (5) 0.0505 (5) −0.0055 (3) −0.0203 (4) −0.0077 (4)
N1 0.0312 (13) 0.0299 (14) 0.0373 (13) −0.0033 (11) −0.0055 (11) −0.0150 (11)
N2 0.0402 (16) 0.0513 (18) 0.0404 (15) −0.0058 (13) −0.0001 (12) −0.0225 (14)
N3 0.0296 (13) 0.0262 (13) 0.0313 (13) 0.0009 (10) −0.0064 (11) −0.0128 (11)
N4 0.0535 (18) 0.0400 (17) 0.0384 (15) −0.0155 (14) 0.0007 (13) −0.0111 (13)

Geometric parameters (Å, °)

Zn1—N4 2.117 (3) C5—N3 1.266 (3)
Zn1—N3 2.122 (3) C5—C8 1.485 (4)
Zn1—N1 2.245 (2) C6—N3 1.467 (3)
Zn1—Cl2 2.2807 (14) C6—C7 1.510 (4)
Zn1—Cl1 2.2862 (16) C6—H6A 0.9700
C1—N1 1.329 (4) C6—H6B 0.9700
C1—C2 1.387 (4) C7—N4 1.468 (4)
C1—H1 0.9300 C7—H7A 0.9700
C2—N2 1.320 (4) C7—H7B 0.9700
C2—H2 0.9300 C8—H8A 0.9600
C3—N2 1.337 (4) C8—H8B 0.9600
C3—C4 1.381 (4) C8—H8C 0.9600
C3—H3 0.9300 N4—H4A 0.9000
C4—N1 1.335 (3) N4—H4B 0.9000
C4—C5 1.505 (4)
N4—Zn1—N3 77.98 (9) N3—C6—H6B 110.0
N4—Zn1—N1 145.43 (10) C7—C6—H6B 110.0
N3—Zn1—N1 73.32 (8) H6A—C6—H6B 108.4
N4—Zn1—Cl2 104.77 (9) N4—C7—C6 109.6 (2)
N3—Zn1—Cl2 104.26 (7) N4—C7—H7A 109.8
N1—Zn1—Cl2 100.68 (8) C6—C7—H7A 109.8
N4—Zn1—Cl1 100.56 (8) N4—C7—H7B 109.8
N3—Zn1—Cl1 146.85 (7) C6—C7—H7B 109.8
N1—Zn1—Cl1 93.29 (7) H7A—C7—H7B 108.2
Cl2—Zn1—Cl1 108.03 (3) C5—C8—H8A 109.5
N1—C1—C2 120.9 (3) C5—C8—H8B 109.5
N1—C1—H1 119.5 H8A—C8—H8B 109.5
C2—C1—H1 119.5 C5—C8—H8C 109.5
N2—C2—C1 122.8 (3) H8A—C8—H8C 109.5
N2—C2—H2 118.6 H8B—C8—H8C 109.5
C1—C2—H2 118.6 C1—N1—C4 117.2 (2)
N2—C3—C4 122.5 (3) C1—N1—Zn1 128.1 (2)
N2—C3—H3 118.7 C4—N1—Zn1 113.90 (17)
C4—C3—H3 118.7 C2—N2—C3 115.7 (3)
N1—C4—C3 120.8 (2) C5—N3—C6 122.9 (2)
N1—C4—C5 115.2 (2) C5—N3—Zn1 121.79 (19)
C3—C4—C5 124.0 (3) C6—N3—Zn1 114.89 (17)
N3—C5—C8 125.8 (3) C7—N4—Zn1 106.93 (18)
N3—C5—C4 114.5 (2) C7—N4—H4A 110.3
C8—C5—C4 119.6 (2) Zn1—N4—H4A 110.3
N3—C6—C7 108.4 (2) C7—N4—H4B 110.3
N3—C6—H6A 110.0 Zn1—N4—H4B 110.3
C7—C6—H6A 110.0 H4A—N4—H4B 108.6
N1—C1—C2—N2 0.9 (5) C1—C2—N2—C3 1.6 (5)
N2—C3—C4—N1 −1.1 (4) C4—C3—N2—C2 −1.5 (4)
N2—C3—C4—C5 179.4 (3) C8—C5—N3—C6 −1.6 (5)
N1—C4—C5—N3 −11.6 (4) C4—C5—N3—C6 176.5 (2)
C3—C4—C5—N3 167.8 (3) C8—C5—N3—Zn1 −173.7 (2)
N1—C4—C5—C8 166.6 (3) C4—C5—N3—Zn1 4.4 (3)
C3—C4—C5—C8 −13.9 (4) C7—C6—N3—C5 173.4 (3)
N3—C6—C7—N4 43.0 (3) C7—C6—N3—Zn1 −13.9 (3)
C2—C1—N1—C4 −3.5 (5) N4—Zn1—N3—C5 162.1 (2)
C2—C1—N1—Zn1 165.3 (2) N1—Zn1—N3—C5 1.6 (2)
C3—C4—N1—C1 3.6 (4) Cl2—Zn1—N3—C5 −95.5 (2)
C5—C4—N1—C1 −176.9 (3) Cl1—Zn1—N3—C5 71.1 (3)
C3—C4—N1—Zn1 −166.8 (2) N4—Zn1—N3—C6 −10.6 (2)
C5—C4—N1—Zn1 12.7 (3) N1—Zn1—N3—C6 −171.1 (2)
N4—Zn1—N1—C1 147.8 (3) Cl2—Zn1—N3—C6 91.80 (19)
N3—Zn1—N1—C1 −177.1 (3) Cl1—Zn1—N3—C6 −101.6 (2)
Cl2—Zn1—N1—C1 −75.2 (3) C6—C7—N4—Zn1 −51.8 (3)
Cl1—Zn1—N1—C1 33.8 (3) N3—Zn1—N4—C7 33.3 (2)
N4—Zn1—N1—C4 −43.1 (3) N1—Zn1—N4—C7 67.6 (3)
N3—Zn1—N1—C4 −8.02 (18) Cl2—Zn1—N4—C7 −68.5 (2)
Cl2—Zn1—N1—C4 93.82 (19) Cl1—Zn1—N4—C7 179.54 (19)
Cl1—Zn1—N1—C4 −157.14 (19)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N4—H4B···Cl1i 0.90 2.77 3.531 (4) 143.
N4—H4A···Cl2ii 0.90 2.81 3.534 (3) 139.
C2—H2···Cl2iii 0.93 2.81 3.672 (4) 155.
C3—H3···Cl2iv 0.93 2.80 3.704 (4) 164.
C6—H6B···Cl1i 0.97 2.84 3.550 (4) 131.

Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x, −y+1, −z+2; (iii) −x+1, −y+1, −z+1; (iv) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2386).

References

  1. Bruker (2008). SADABS, SAINT and APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Coles, S. J., Hursthouse, M. B., Kelly, D. G., Toner, A. J. & Walker, N. M. (1998). J. Chem. Soc. Dalton Trans. pp. 3489–3494.
  3. Gourbatsis, S., Perlepes, S. P., Butler, I. S. & Hadjiliadis, N. (1999). Polyhedron, 18, 2369–2375.
  4. Pascu, M., Tuna, F., Kolodziejczyk, E., Pascu, G. I., Clarkson, G. & Hannon, M. J. (2004). Dalton Trans. pp. 1546–1555. [DOI] [PubMed]
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811042115/bh2386sup1.cif

e-67-m1555-sup1.cif (17.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811042115/bh2386Isup2.hkl

e-67-m1555-Isup2.hkl (104.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES