Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 22;67(Pt 11):m1556. doi: 10.1107/S1600536811042231

Dibromido{2-[(4-nitro­phen­yl)imino­meth­yl]pyridine-κ2 N,N′}zinc(II)

Sadegh Salehzadeh a,*, Mehdi Khalaj a, Saeed Dehghanpour b, Isaac Tarmoradi a
PMCID: PMC3246977  PMID: 22219797

Abstract

In the title compound, [ZnBr2(C12H9N3O2)], the ZnII ion is bonded to two Br ions and two N atoms of the diimine ligand in a distorted tetra­hedral geometry. With the exception of the Br atoms, all other atoms are disordered over two sets of sites corresponding to a 180° rotation of the mol­ecule along [Inline graphic02]. The refined occupancies of the components are 0.809 (2) and 0.191 (2). In addition, the crystal studied was a non-merohedral twin with a refined component ratio of 0.343 (2):0.657 (2).

Related literature

For related structures, see: Khalaj et al. (2009). For background information on diimine complexes, see: Khalaj et al. (2010); Salehzadeh et al. (2011).graphic file with name e-67-m1556-scheme1.jpg

Experimental

Crystal data

  • [ZnBr2(C12H9N3O2)]

  • M r = 452.41

  • Triclinic, Inline graphic

  • a = 7.2614 (5) Å

  • b = 7.9228 (8) Å

  • c = 13.6436 (15) Å

  • α = 87.724 (4)°

  • β = 74.719 (6)°

  • γ = 82.007 (6)°

  • V = 749.81 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 6.97 mm−1

  • T = 150 K

  • 0.28 × 0.15 × 0.08 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995) T min = 0.417, T max = 0.588

  • 5868 measured reflections

  • 3252 independent reflections

  • 2630 reflections with I > 2σ(I)

  • R int = 0.082

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056

  • wR(F 2) = 0.140

  • S = 1.04

  • 3252 reflections

  • 237 parameters

  • 48 restraints

  • H-atom parameters constrained

  • Δρmax = 0.70 e Å−3

  • Δρmin = −1.24 e Å−3

Data collection: COLLECT (Nonius, 2002); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811042231/gk2406sup1.cif

e-67-m1556-sup1.cif (28KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811042231/gk2406Isup2.hkl

e-67-m1556-Isup2.hkl (159.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Br1—Zn1 2.3428 (14)
Br2—Zn1 2.3357 (16)
Zn1—N1 2.034 (9)
Zn1—N2 2.074 (7)
N1—Zn1—N2 81.2 (3)
N1—Zn1—Br2 116.1 (3)
N2—Zn1—Br2 118.0 (2)
N1—Zn1—Br1 112.3 (3)
N2—Zn1—Br1 111.5 (2)
Br2—Zn1—Br1 113.75 (5)

Acknowledgments

The authors would like to acknowledge the Bu-Ali Sina and Alzahra University Research Councils for partial support of this work

supplementary crystallographic information

Comment

In our ongoing studies on the synthesis, structural and spectroscopic characterization of transition metal complexes with diimine ligands Khalaj et al. (2010); Salehzadeh et al. (2011), we report herein the crystal structure of the title complex that was prepared by the reaction of ZnBr2 with the bidentate ligand (4-nitrophenyl)-pyridine-2-ylmethylene-amine (Scheme I).

The molecluar structure of the title complex is shown in Fig. 1. The ZnII ion is in a distorted tetrahedral environment formed by the chelating ligand and two Br ions. A comparison of the dihedral angles between the planes of the pyridine, chelate and the benzene ring indicates that the ligand is distorted from planarity, with twist of 22.23 (24)° between the chelate (N1C5C6N2) and the benzene (C7C8C9C10C11C12) planes. The Zn—Br and Zn—N bond dimensions compare well with the values found in other tetrahedral diimine complexes of zinc bromide (Khalaj et al., 2009).

Experimental

The title complex was prepared by the reaction of ZnBr2 (22.5 mg, 0.1 mmol) and (4-nitrophenyl)pyridin-2-ylmethyleneamine (22.7 mg, 0.1 mmol) in 15 ml acetonitrile at room temperature. The solution was then concentrated under vacuum, and diffusion of diethyl ether vapor into the concentrated solution gave yellow crystals of the title compound in 60% yield.

Refinement

The H(C) atom positions were calculated and refined in isotropic approximation within riding model with the Uiso(H) parameters equal to 1.2 Ueq(C) where Ueq(C) is the equivalent thermal parameter of the carbon atoms to which corresponding H atoms are bonded. When the results of the initial refinements of the structure were examined for twinning the PLATON (Spek, 2009) software indicated that the crystal was a non-merohedral twin with twin matrix -1 0 0, 0 -1 0, -1 0 1. When refined using data generated by this twin matrix the ratio of the twin components refined to 0.342 (2): 0.658. Further to refinement of the twin components, residual electron density peaks were located in difference Fourier maps which indicated the structure was disordered. All atoms, except for the Br atoms were modeled as disordered corresponding to a rotation of approximately 180° (see Fig. 1). The Br atoms related by unit cell translations along the a axis are in sites which coordinate to both the major and minor components of disorder with an occupancy ratio of 0.809 (2):0.191 (2). The geometry of the twin components were constrained to be the same using the SAME instruction in SHELXL (Sheldrick, 2008) and the anisotropic displacement parameters of each individual major and minor atom site were constrained to be equal using the EADP instruction in SHELXL. The twin law corresponds to a 180° rotation about the [-1 0 2] direction and this direction is parallel to the rotation axis relating the two disordered sites of the molecule.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing both disordered components. The minor component is labeled with the suffix 'A'. The atoms Br1a and Br2a are related by the symmetry operation (x-1, y, x).

Crystal data

[ZnBr2(C12H9N3O2)] Z = 2
Mr = 452.41 F(000) = 436
Triclinic, P1 Dx = 2.004 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.2614 (5) Å Cell parameters from 6572 reflections
b = 7.9228 (8) Å θ = 2.6–27.5°
c = 13.6436 (15) Å µ = 6.97 mm1
α = 87.724 (4)° T = 150 K
β = 74.719 (6)° Plate, colourless
γ = 82.007 (6)° 0.28 × 0.15 × 0.08 mm
V = 749.81 (12) Å3

Data collection

Nonius KappaCCD diffractometer 3252 independent reflections
Radiation source: fine-focus sealed tube 2630 reflections with I > 2σ(I)
graphite Rint = 0.082
Detector resolution: 9 pixels mm-1 θmax = 27.6°, θmin = 2.6°
φ scans and ω scans with κ offsets h = −9→9
Absorption correction: multi-scan (SORTAV; Blessing, 1995) k = −10→10
Tmin = 0.417, Tmax = 0.588 l = −9→17
5868 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0564P)2 + 2.802P] where P = (Fo2 + 2Fc2)/3
3252 reflections (Δ/σ)max < 0.001
237 parameters Δρmax = 0.70 e Å3
48 restraints Δρmin = −1.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Br1 0.33600 (13) 0.49862 (12) 0.72990 (8) 0.0358 (2)
Br2 0.43682 (13) −0.00007 (12) 0.71961 (8) 0.0366 (3)
Zn1 0.20560 (17) 0.24153 (16) 0.74480 (11) 0.0259 (3) 0.809 (2)
O1 0.056 (2) 0.137 (2) 0.2086 (8) 0.036 (3) 0.809 (2)
O2 0.2084 (14) 0.3589 (19) 0.1962 (8) 0.034 (3) 0.809 (2)
N1 −0.0223 (12) 0.2369 (13) 0.8687 (7) 0.027 (2) 0.809 (2)
N2 −0.0123 (10) 0.2536 (11) 0.6714 (6) 0.0235 (16) 0.809 (2)
N3 0.1139 (15) 0.2531 (18) 0.2458 (5) 0.027 (2) 0.809 (2)
C1 −0.0292 (14) 0.2250 (15) 0.9678 (9) 0.032 (2) 0.809 (2)
H1A 0.0888 0.2123 0.9868 0.038* 0.809 (2)
C2 −0.2000 (15) 0.2302 (17) 1.0447 (9) 0.036 (3) 0.809 (2)
H2A −0.1998 0.2239 1.1143 0.043* 0.809 (2)
C3 −0.3711 (15) 0.245 (2) 1.0150 (10) 0.038 (3) 0.809 (2)
H3A −0.4906 0.2452 1.0647 0.046* 0.809 (2)
C4 −0.3672 (16) 0.259 (2) 0.9150 (10) 0.042 (3) 0.809 (2)
H4A −0.4839 0.2762 0.8947 0.050* 0.809 (2)
C5 −0.1929 (19) 0.249 (2) 0.8435 (6) 0.029 (2) 0.809 (2)
C6 −0.1789 (12) 0.2637 (12) 0.7350 (8) 0.027 (2) 0.809 (2)
H6A −0.2922 0.2807 0.7115 0.032* 0.809 (2)
C7 0.0079 (12) 0.2568 (13) 0.5649 (7) 0.022 (2) 0.809 (2)
C8 −0.1213 (16) 0.1964 (17) 0.5189 (8) 0.026 (2) 0.809 (2)
H8A −0.2320 0.1533 0.5603 0.032* 0.809 (2)
C9 −0.091 (2) 0.198 (2) 0.4148 (11) 0.028 (3) 0.809 (2)
H9A −0.1801 0.1597 0.3837 0.033* 0.809 (2)
C10 0.074 (3) 0.259 (2) 0.3573 (6) 0.023 (3) 0.809 (2)
C11 0.2013 (19) 0.3242 (17) 0.3996 (9) 0.024 (3) 0.809 (2)
H11A 0.3071 0.3731 0.3575 0.029* 0.809 (2)
C12 0.1737 (16) 0.3183 (16) 0.5044 (8) 0.027 (2) 0.809 (2)
H12A 0.2651 0.3551 0.5345 0.032* 0.809 (2)
Zn1A −0.4500 (7) 0.2540 (7) 0.7425 (4) 0.0259 (3) 0.191 (2)
O1A 0.101 (12) 0.141 (12) 0.196 (3) 0.036 (3) 0.191 (2)
O2A 0.252 (8) 0.354 (10) 0.211 (3) 0.034 (3) 0.191 (2)
N1A −0.349 (2) 0.259 (6) 0.8676 (10) 0.027 (2) 0.191 (2)
N2A −0.1587 (13) 0.243 (4) 0.6709 (11) 0.0235 (16) 0.191 (2)
N3A 0.156 (7) 0.240 (8) 0.2468 (11) 0.027 (2) 0.191 (2)
C1A −0.441 (3) 0.265 (6) 0.9666 (11) 0.032 (2) 0.191 (2)
H1AA −0.5778 0.2718 0.9850 0.038* 0.191 (2)
C2A −0.348 (4) 0.262 (8) 1.0440 (14) 0.036 (3) 0.191 (2)
H2AA −0.4183 0.2797 1.1130 0.043* 0.191 (2)
C3A −0.147 (4) 0.233 (9) 1.0156 (16) 0.038 (3) 0.191 (2)
H3AA −0.0783 0.2113 1.0660 0.046* 0.191 (2)
C4A −0.051 (3) 0.234 (10) 0.916 (2) 0.042 (3) 0.191 (2)
H4AA 0.0856 0.2229 0.8961 0.050* 0.191 (2)
C5A −0.154 (3) 0.252 (7) 0.8437 (12) 0.029 (2) 0.191 (2)
C6A −0.0591 (17) 0.252 (5) 0.7351 (15) 0.027 (2) 0.191 (2)
H6AA 0.0752 0.2576 0.7121 0.032* 0.191 (2)
C7A −0.072 (2) 0.246 (4) 0.5645 (11) 0.022 (2) 0.191 (2)
C8A 0.108 (4) 0.298 (7) 0.5209 (16) 0.026 (2) 0.191 (2)
H8AA 0.1774 0.3375 0.5635 0.032* 0.191 (2)
C9A 0.187 (6) 0.292 (10) 0.4172 (18) 0.028 (3) 0.191 (2)
H9AA 0.3085 0.3294 0.3875 0.033* 0.191 (2)
C10A 0.083 (8) 0.231 (11) 0.3581 (11) 0.023 (3) 0.191 (2)
C11A −0.090 (8) 0.169 (11) 0.3986 (17) 0.024 (3) 0.191 (2)
H11B −0.1520 0.1210 0.3556 0.029* 0.191 (2)
C12A −0.171 (5) 0.178 (8) 0.5029 (14) 0.027 (2) 0.191 (2)
H12B −0.2923 0.1394 0.5319 0.032* 0.191 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0307 (5) 0.0262 (4) 0.0540 (6) −0.0087 (3) −0.0146 (5) −0.0002 (5)
Br2 0.0281 (4) 0.0272 (4) 0.0537 (7) −0.0054 (3) −0.0079 (5) −0.0030 (5)
Zn1 0.0226 (5) 0.0275 (5) 0.0292 (6) −0.0083 (4) −0.0068 (5) −0.0006 (6)
O1 0.041 (9) 0.039 (4) 0.031 (5) −0.007 (6) −0.013 (4) −0.010 (4)
O2 0.037 (7) 0.035 (4) 0.029 (5) −0.010 (5) −0.009 (4) 0.009 (4)
N1 0.028 (4) 0.024 (4) 0.031 (5) −0.005 (3) −0.008 (4) 0.001 (5)
N2 0.026 (4) 0.016 (4) 0.031 (4) −0.004 (3) −0.009 (4) −0.004 (4)
N3 0.023 (6) 0.029 (4) 0.031 (4) 0.006 (5) −0.013 (4) −0.003 (5)
C1 0.026 (5) 0.032 (5) 0.040 (7) −0.001 (4) −0.013 (5) 0.003 (6)
C2 0.042 (6) 0.043 (7) 0.017 (5) −0.007 (6) 0.003 (5) −0.006 (6)
C3 0.018 (5) 0.065 (9) 0.028 (7) −0.005 (5) 0.002 (5) −0.008 (7)
C4 0.023 (5) 0.060 (8) 0.042 (8) −0.010 (5) −0.006 (6) 0.012 (8)
C5 0.026 (6) 0.029 (4) 0.034 (5) −0.009 (5) −0.008 (5) −0.009 (5)
C6 0.023 (4) 0.023 (5) 0.037 (6) −0.006 (4) −0.011 (5) 0.001 (5)
C7 0.020 (6) 0.020 (4) 0.024 (4) −0.002 (5) −0.002 (4) 0.001 (4)
C8 0.025 (6) 0.022 (5) 0.030 (6) −0.009 (4) −0.001 (5) 0.000 (5)
C9 0.031 (6) 0.019 (8) 0.033 (7) −0.004 (5) −0.008 (5) −0.007 (5)
C10 0.025 (4) 0.015 (8) 0.027 (4) 0.003 (4) −0.006 (4) 0.001 (4)
C11 0.033 (6) 0.014 (6) 0.021 (6) −0.005 (4) 0.001 (5) 0.002 (4)
C12 0.025 (6) 0.027 (5) 0.029 (6) −0.011 (5) −0.003 (4) −0.001 (5)
Zn1A 0.0226 (5) 0.0275 (5) 0.0292 (6) −0.0083 (4) −0.0068 (5) −0.0006 (6)
O1A 0.041 (9) 0.039 (4) 0.031 (5) −0.007 (6) −0.013 (4) −0.010 (4)
O2A 0.037 (7) 0.035 (4) 0.029 (5) −0.010 (5) −0.009 (4) 0.009 (4)
N1A 0.028 (4) 0.024 (4) 0.031 (5) −0.005 (3) −0.008 (4) 0.001 (5)
N2A 0.026 (4) 0.016 (4) 0.031 (4) −0.004 (3) −0.009 (4) −0.004 (4)
N3A 0.023 (6) 0.029 (4) 0.031 (4) 0.006 (5) −0.013 (4) −0.003 (5)
C1A 0.026 (5) 0.032 (5) 0.040 (7) −0.001 (4) −0.013 (5) 0.003 (6)
C2A 0.042 (6) 0.043 (7) 0.017 (5) −0.007 (6) 0.003 (5) −0.006 (6)
C3A 0.018 (5) 0.065 (9) 0.028 (7) −0.005 (5) 0.002 (5) −0.008 (7)
C4A 0.023 (5) 0.060 (8) 0.042 (8) −0.010 (5) −0.006 (6) 0.012 (8)
C5A 0.026 (6) 0.029 (4) 0.034 (5) −0.009 (5) −0.008 (5) −0.009 (5)
C6A 0.023 (4) 0.023 (5) 0.037 (6) −0.006 (4) −0.011 (5) 0.001 (5)
C7A 0.020 (6) 0.020 (4) 0.024 (4) −0.002 (5) −0.002 (4) 0.001 (4)
C8A 0.025 (6) 0.022 (5) 0.030 (6) −0.009 (4) −0.001 (5) 0.000 (5)
C9A 0.031 (6) 0.019 (8) 0.033 (7) −0.004 (5) −0.008 (5) −0.007 (5)
C10A 0.025 (4) 0.015 (8) 0.027 (4) 0.003 (4) −0.006 (4) 0.001 (4)
C11A 0.033 (6) 0.014 (6) 0.021 (6) −0.005 (4) 0.001 (5) 0.002 (4)
C12A 0.025 (6) 0.027 (5) 0.029 (6) −0.011 (5) −0.003 (4) −0.001 (5)

Geometric parameters (Å, °)

Br1—Zn1Ai 2.340 (5) C12—H12A 0.9500
Br1—Zn1 2.3428 (14) Zn1A—N1A 2.033 (9)
Br2—Zn1 2.3357 (16) Zn1A—N2A 2.074 (8)
Br2—Zn1Ai 2.339 (5) Zn1A—Br2ii 2.339 (5)
Zn1—N1 2.034 (9) Zn1A—Br1ii 2.340 (5)
Zn1—N2 2.074 (7) O1A—N3A 1.239 (10)
O1—N3 1.239 (10) O2A—N3A 1.226 (10)
O2—N3 1.226 (10) N1A—C1A 1.340 (14)
N1—C1 1.340 (14) N1A—C5A 1.361 (16)
N1—C5 1.361 (16) N2A—C6A 1.284 (11)
N2—C6 1.284 (11) N2A—C7A 1.422 (12)
N2—C7 1.421 (12) N3A—C10A 1.472 (10)
N3—C10 1.472 (10) C1A—C2A 1.394 (14)
C1—C2 1.394 (14) C1A—H1AA 0.9500
C1—H1A 0.9500 C2A—C3A 1.394 (15)
C2—C3 1.394 (15) C2A—H2AA 0.9500
C2—H2A 0.9500 C3A—C4A 1.357 (18)
C3—C4 1.357 (18) C3A—H3AA 0.9500
C3—H3A 0.9500 C4A—C5A 1.373 (16)
C4—C5 1.373 (16) C4A—H4AA 0.9500
C4—H4A 0.9500 C5A—C6A 1.459 (14)
C5—C6 1.459 (14) C6A—H6AA 0.9500
C6—H6A 0.9500 C7A—C8A 1.400 (14)
C7—C8 1.400 (14) C7A—C12A 1.406 (12)
C7—C12 1.405 (12) C8A—C9A 1.379 (18)
C8—C9 1.379 (18) C8A—H8AA 0.9500
C8—H8A 0.9500 C9A—C10A 1.381 (18)
C9—C10 1.381 (18) C9A—H9AA 0.9500
C9—H9A 0.9500 C10A—C11A 1.380 (19)
C10—C11 1.380 (19) C11A—C12A 1.390 (16)
C11—C12 1.390 (16) C11A—H11B 0.9500
C11—H11A 0.9500 C12A—H12B 0.9500
Zn1Ai—Br1—Zn1 64.77 (11) C7—C12—H12A 120.6
Zn1—Br2—Zn1Ai 64.90 (12) N1A—Zn1A—N2A 81.2 (3)
N1—Zn1—N2 81.2 (3) N1A—Zn1A—Br2ii 114.8 (13)
N1—Zn1—Br2 116.1 (3) N2A—Zn1A—Br2ii 110.8 (8)
N2—Zn1—Br2 118.0 (2) N1A—Zn1A—Br1ii 111.9 (12)
N1—Zn1—Br1 112.3 (3) N2A—Zn1A—Br1ii 120.6 (8)
N2—Zn1—Br1 111.5 (2) Br2ii—Zn1A—Br1ii 113.73 (19)
Br2—Zn1—Br1 113.75 (5) C1A—N1A—C5A 116.9 (9)
C1—N1—C5 117.0 (8) C1A—N1A—Zn1A 130.7 (7)
C1—N1—Zn1 130.6 (7) C5A—N1A—Zn1A 112.4 (7)
C5—N1—Zn1 112.4 (7) C6A—N2A—C7A 121.1 (8)
C6—N2—C7 121.2 (7) C6A—N2A—Zn1A 111.5 (6)
C6—N2—Zn1 111.5 (6) C7A—N2A—Zn1A 127.0 (6)
C7—N2—Zn1 127.2 (5) O2A—N3A—O1A 124.4 (8)
O2—N3—O1 124.5 (7) O2A—N3A—C10A 117.9 (9)
O2—N3—C10 118.0 (9) O1A—N3A—C10A 117.4 (9)
O1—N3—C10 117.5 (9) N1A—C1A—C2A 123.4 (10)
N1—C1—C2 123.6 (10) N1A—C1A—H1AA 118.3
N1—C1—H1A 118.2 C2A—C1A—H1AA 118.3
C2—C1—H1A 118.2 C1A—C2A—C3A 117.0 (12)
C1—C2—C3 117.2 (12) C1A—C2A—H2AA 121.5
C1—C2—H2A 121.4 C3A—C2A—H2AA 121.5
C3—C2—H2A 121.4 C4A—C3A—C2A 119.8 (12)
C4—C3—C2 120.0 (11) C4A—C3A—H3AA 120.1
C4—C3—H3A 120.0 C2A—C3A—H3AA 120.1
C2—C3—H3A 120.0 C3A—C4A—C5A 119.3 (11)
C3—C4—C5 119.4 (11) C3A—C4A—H4AA 120.4
C3—C4—H4A 120.3 C5A—C4A—H4AA 120.4
C5—C4—H4A 120.3 N1A—C5A—C4A 122.7 (10)
N1—C5—C4 122.6 (10) N1A—C5A—C6A 115.1 (9)
N1—C5—C6 115.1 (9) C4A—C5A—C6A 122.1 (12)
C4—C5—C6 122.1 (11) N2A—C6A—C5A 119.5 (9)
N2—C6—C5 119.5 (9) N2A—C6A—H6AA 120.2
N2—C6—H6A 120.2 C5A—C6A—H6AA 120.2
C5—C6—H6A 120.2 C8A—C7A—C12A 119.9 (9)
C8—C7—C12 119.9 (8) C8A—C7A—N2A 123.9 (8)
C8—C7—N2 123.9 (8) C12A—C7A—N2A 116.0 (8)
C12—C7—N2 116.1 (8) C9A—C8A—C7A 121.2 (10)
C9—C8—C7 121.2 (10) C9A—C8A—H8AA 119.4
C9—C8—H8A 119.4 C7A—C8A—H8AA 119.4
C7—C8—H8A 119.4 C8A—C9A—C10A 117.6 (12)
C8—C9—C10 117.6 (11) C8A—C9A—H9AA 121.2
C8—C9—H9A 121.2 C10A—C9A—H9AA 121.2
C10—C9—H9A 121.2 C11A—C10A—C9A 122.9 (9)
C11—C10—C9 122.9 (8) C11A—C10A—N3A 118.6 (12)
C11—C10—N3 118.7 (12) C9A—C10A—N3A 118.4 (13)
C9—C10—N3 118.4 (13) C10A—C11A—C12A 119.5 (10)
C10—C11—C12 119.4 (9) C10A—C11A—H11B 120.3
C10—C11—H11A 120.3 C12A—C11A—H11B 120.3
C12—C11—H11A 120.3 C11A—C12A—C7A 118.7 (10)
C11—C12—C7 118.7 (10) C11A—C12A—H12B 120.6
C11—C12—H12A 120.6 C7A—C12A—H12B 120.6

Symmetry codes: (i) x+1, y, z; (ii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2406).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
  2. Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [DOI] [PubMed]
  3. Khalaj, M., Dehghanpour, S., Aleeshah, R. & Mahmoudi, A. (2010). Acta Cryst. E66, m1647. [DOI] [PMC free article] [PubMed]
  4. Khalaj, M., Dehghanpour, S., Mahmoudi, A. & Seyedidarzam, S. (2009). Acta Cryst. E65, m890. [DOI] [PMC free article] [PubMed]
  5. Nonius (2002). COLLECT Nonius BV, Delft, The Netherlands.
  6. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  7. Salehzadeh, S., Dehghanpour, S., Khalaj, M. & Rahimishakiba, M. (2011). Acta Cryst. E67, m327. [DOI] [PMC free article] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811042231/gk2406sup1.cif

e-67-m1556-sup1.cif (28KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811042231/gk2406Isup2.hkl

e-67-m1556-Isup2.hkl (159.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES