Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 22;67(Pt 11):m1567. doi: 10.1107/S1600536811042103

1-Butyl­pyridinium bis­(1,2-dicyano­ethene-1,2-dithiol­ato)nickelate(III)

Hai-Bao Duan a,*
PMCID: PMC3246985  PMID: 22219805

Abstract

The NiIII atom in the anion of the title complex, (C9H14N)[Ni(C4N2S2)2], is coordinated by four S atoms of two maleonitrile­dithiol­ate ligands, and exhibits a square-planar coordination geometry.

Related literature

For background to designed functional materials, see: Nishijo et al. (2000); Robertson & Cronin (2002); Ni et al. (2005). For related structures, see: Ni et al. (2004); Ren et al. (2004, 2008); Duan et al. (2010). For the synthesis of disodium maleonitrile­dithiol­ate and 1-butane-pyridinium bromide, see: Davison & Holm (1967); Yao et al. (2008).graphic file with name e-67-m1567-scheme1.jpg

Experimental

Crystal data

  • (C9H14N)[Ni(C4N2S2)2]

  • M r = 475.30

  • Triclinic, Inline graphic

  • a = 9.2764 (11) Å

  • b = 9.9863 (11) Å

  • c = 12.7115 (15) Å

  • α = 81.695 (9)°

  • β = 75.882 (10)°

  • γ = 64.480 (11)°

  • V = 1029.5 (2) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 5.25 mm−1

  • T = 293 K

  • 0.3 × 0.1 × 0.1 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002) T min = 0.559, T max = 0.591

  • 7461 measured reflections

  • 3196 independent reflections

  • 2499 reflections with I > 2σ(I)

  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.109

  • S = 1.04

  • 3196 reflections

  • 245 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811042103/tk2798sup1.cif

e-67-m1567-sup1.cif (16.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811042103/tk2798Isup2.hkl

e-67-m1567-Isup2.hkl (156.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Ni1—S1 2.1501 (8)
Ni1—S2 2.1436 (8)
Ni1—S3 2.1458 (8)
Ni1—S4 2.1461 (8)

Acknowledgments

The author thanks the Nanjing Xiaozhuang College of Jiangsu Province, P. R. China, for financial support (grant No. 2010KYQN28).

supplementary crystallographic information

Comment

Supramolecular chemistry and molecular crystal engineering, which is the planning and utilization of crystal-oriented syntheses for the bottom-up construction of functional molecular solids from molecules and ions, are powerful tools for the assembly of designed functional materials (Robertson & Cronin, 2002). Bis-1,2-dithiolene complexes of transition metals have been widely studied due to their novel properties and applications in the areas of near-infrared (near-IR) dyes, conducting, magnetic and non-linear optical materials (Nishijo et al., 2000; Ni et al., 2005). These applications arise due to a combination of functional properties, specific geometries and intermolecular interactions. Herein, we report the crystal structure of the title compound (I).

The molecular structure of (I) is illustrated in Fig. 1. and selected bond distances are given in Table 1. The asymmmetric units comprises one [Ni(mnt)2]- monoanion and one 1-butyl-pyridinium cation. The Ni ion in the [Ni(mnt)2]- anion is coordinated by four sulfur atoms of two mnt2- ligands, and exhibits square-planar coordination geometry. The bond lengths in the anion are in good agreement with those found in other [Ni(mnt)2]- compounds (Ni et al., 2004; Ren et al., 2004; Duan et al., 2010; Ren et al., 2008).

Experimental

All reagents and chemicals were purchased from commerical sources and used without further purification. The starting materials disodium maleonitriledithiolate (Davison et al., 1967) and 1-butyl-pyridinium bromide (Yao et al., 2008) were synthesized following the literature procedures. Disodium maleonitriledithiolate (456 mg, 2.5 mmol) and nickel chloride hexahydrate (297 mg, 1.25 mmol) were mixed under stirring in water (20 ml) at room temperature. Subsequently, a solution of 1-butyl-pyridinium bromide (1.5 mmol) in methanol (10 ml) was added to the mixture. The red precipitate that was immediately formed was filtered off and washed with methanol. Then, a methanol solution of I2 (205 mg, 0.8 mmol) was added slowly. After stirring for 40 minutes, the mixture was allowed to stand overnight. The microcrystals formed were recrystallized from acetone to give black blocks.

Refinement

The C-bound H atoms were geometrically placed (C—H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structures of the ionic components of (I), showing the atom-numbering scheme and displacement ellipsoids at the 30% probability level.

Crystal data

(C9H14N)[Ni(C4N2S2)2] V = 1029.5 (2) Å3
Mr = 475.30 Z = 2
Triclinic, P1 F(000) = 486
Hall symbol: -P 1 Dx = 1.533 Mg m3
a = 9.2764 (11) Å Cu Kα radiation, λ = 1.54178 Å
b = 9.9863 (11) Å µ = 5.25 mm1
c = 12.7115 (15) Å T = 293 K
α = 81.695 (9)° Block, black
β = 75.882 (10)° 0.3 × 0.1 × 0.1 mm
γ = 64.480 (11)°

Data collection

Bruker SMART CCD area-detector diffractometer 3196 independent reflections
Radiation source: fine-focus sealed tube 2499 reflections with I > 2σ(I)
graphite Rint = 0.018
φ and ω scans θmax = 62.6°, θmin = 3.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) h = −10→9
Tmin = 0.559, Tmax = 0.591 k = −11→11
7461 measured reflections l = −14→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0752P)2] where P = (Fo2 + 2Fc2)/3
3196 reflections (Δ/σ)max < 0.001
245 parameters Δρmax = 0.36 e Å3
1 restraint Δρmin = −0.33 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.17351 (5) 0.21297 (4) 0.32522 (3) 0.05459 (18)
S1 −0.01043 (8) 0.19088 (7) 0.45807 (6) 0.0601 (2)
S2 0.04693 (8) 0.45024 (7) 0.31675 (6) 0.0634 (2)
S3 0.34944 (8) 0.23715 (8) 0.18766 (6) 0.0646 (2)
S4 0.30030 (9) −0.02462 (7) 0.33157 (6) 0.0681 (2)
N1 −0.3268 (3) 0.7577 (3) 0.4479 (2) 0.0791 (7)
N2 −0.4145 (3) 0.4193 (3) 0.6218 (2) 0.0862 (8)
N3 0.6747 (3) −0.3235 (3) 0.1797 (2) 0.0886 (8)
N4 0.7294 (3) 0.0134 (3) 0.0023 (2) 0.0882 (8)
N5 0.1415 (3) 0.7746 (2) 0.81191 (17) 0.0575 (5)
C1 −0.2966 (3) 0.3967 (3) 0.5591 (2) 0.0611 (7)
C2 −0.1507 (3) 0.3709 (3) 0.4772 (2) 0.0531 (6)
C3 −0.2387 (3) 0.6364 (3) 0.4331 (2) 0.0599 (7)
C4 −0.1257 (3) 0.4844 (3) 0.4169 (2) 0.0550 (6)
C5 0.6208 (3) 0.0325 (3) 0.0733 (2) 0.0652 (7)
C6 0.4856 (3) 0.0568 (3) 0.1630 (2) 0.0565 (6)
C7 0.4645 (3) −0.0567 (3) 0.2251 (2) 0.0569 (6)
C8 0.5794 (3) −0.2072 (3) 0.2023 (2) 0.0659 (7)
C9 0.2814 (3) 0.6993 (3) 0.7434 (2) 0.0650 (7)
H9 0.3298 0.5961 0.7497 0.078*
C10 0.3530 (4) 0.7722 (3) 0.6651 (2) 0.0731 (8)
H10 0.4497 0.7186 0.6182 0.088*
C11 0.2837 (4) 0.9231 (4) 0.6549 (2) 0.0777 (9)
H11 0.3331 0.9734 0.6020 0.093*
C12 0.1386 (4) 1.0006 (3) 0.7248 (3) 0.0782 (9)
H12 0.0884 1.1037 0.7190 0.094*
C13 0.0705 (4) 0.9233 (3) 0.8022 (2) 0.0686 (8)
H13 −0.0272 0.9748 0.8491 0.082*
C14 0.0666 (4) 0.6954 (3) 0.8999 (2) 0.0675 (7)
H14A 0.1108 0.5915 0.8837 0.081*
H14B −0.0502 0.7374 0.9038 0.081*
C15 0.0995 (4) 0.7078 (4) 1.0100 (2) 0.0785 (9)
H15A 0.0642 0.8119 1.0222 0.094*
H15B 0.0340 0.6697 1.0668 0.094*
C16 0.2730 (4) 0.6270 (4) 1.0199 (3) 0.0827 (9)
H16A 0.3399 0.6628 0.9625 0.099*
H16B 0.3082 0.5220 1.0108 0.099*
C17 0.2978 (4) 0.6479 (4) 1.1299 (3) 0.0867 (10)
H17A 0.2674 0.7513 1.1377 0.130*
H17B 0.4104 0.5924 1.1341 0.130*
H17C 0.2311 0.6131 1.1868 0.130*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.0448 (3) 0.0471 (3) 0.0603 (3) −0.0124 (2) −0.0012 (2) −0.0050 (2)
S1 0.0525 (4) 0.0452 (4) 0.0670 (4) −0.0135 (3) 0.0015 (3) −0.0008 (3)
S2 0.0567 (4) 0.0489 (4) 0.0689 (4) −0.0174 (3) 0.0060 (3) −0.0021 (3)
S3 0.0525 (4) 0.0501 (4) 0.0736 (4) −0.0146 (3) 0.0055 (3) −0.0022 (3)
S4 0.0579 (4) 0.0488 (4) 0.0742 (5) −0.0127 (3) 0.0096 (4) −0.0021 (3)
N1 0.0769 (17) 0.0505 (15) 0.0934 (19) −0.0155 (13) −0.0048 (14) −0.0097 (13)
N2 0.0728 (18) 0.0701 (17) 0.0859 (18) −0.0194 (14) 0.0192 (15) −0.0071 (14)
N3 0.0788 (18) 0.0535 (16) 0.103 (2) −0.0110 (14) 0.0082 (15) −0.0122 (14)
N4 0.0702 (18) 0.0761 (18) 0.0905 (19) −0.0213 (14) 0.0174 (16) −0.0071 (15)
N5 0.0505 (12) 0.0568 (13) 0.0561 (12) −0.0137 (10) −0.0055 (10) −0.0116 (10)
C1 0.0588 (17) 0.0468 (14) 0.0640 (16) −0.0144 (12) −0.0012 (14) −0.0049 (12)
C2 0.0487 (14) 0.0487 (14) 0.0529 (13) −0.0139 (11) −0.0031 (12) −0.0079 (11)
C3 0.0610 (17) 0.0499 (17) 0.0608 (15) −0.0200 (13) −0.0031 (13) −0.0034 (12)
C4 0.0512 (15) 0.0477 (14) 0.0581 (14) −0.0143 (11) −0.0040 (12) −0.0104 (12)
C5 0.0555 (17) 0.0548 (16) 0.0709 (18) −0.0164 (13) 0.0016 (15) −0.0049 (13)
C6 0.0425 (14) 0.0557 (15) 0.0617 (15) −0.0135 (11) −0.0023 (12) −0.0097 (12)
C7 0.0469 (14) 0.0512 (15) 0.0615 (15) −0.0125 (12) −0.0024 (12) −0.0091 (12)
C8 0.0583 (17) 0.0542 (17) 0.0709 (17) −0.0181 (14) 0.0033 (14) −0.0048 (14)
C9 0.0559 (17) 0.0590 (16) 0.0660 (17) −0.0105 (13) −0.0073 (14) −0.0122 (14)
C10 0.0630 (18) 0.075 (2) 0.0645 (17) −0.0190 (16) 0.0043 (15) −0.0130 (15)
C11 0.086 (2) 0.081 (2) 0.0653 (17) −0.0384 (18) −0.0079 (17) 0.0008 (16)
C12 0.090 (2) 0.0564 (17) 0.0769 (19) −0.0210 (16) −0.0151 (18) −0.0030 (15)
C13 0.0653 (18) 0.0539 (16) 0.0689 (17) −0.0092 (14) −0.0057 (15) −0.0130 (14)
C14 0.0621 (18) 0.0705 (18) 0.0689 (17) −0.0297 (15) −0.0060 (14) −0.0053 (14)
C15 0.072 (2) 0.078 (2) 0.0735 (18) −0.0302 (16) 0.0003 (16) 0.0052 (16)
C16 0.083 (2) 0.071 (2) 0.082 (2) −0.0255 (17) −0.0114 (18) 0.0043 (16)
C17 0.096 (2) 0.093 (2) 0.079 (2) −0.046 (2) −0.0262 (19) 0.0118 (18)

Geometric parameters (Å, °)

Ni1—S1 2.1501 (8) C9—C10 1.359 (4)
Ni1—S2 2.1436 (8) C9—H9 0.9300
Ni1—S3 2.1458 (8) C10—C11 1.361 (4)
Ni1—S4 2.1461 (8) C10—H10 0.9300
S1—C2 1.715 (2) C11—C12 1.384 (4)
S2—C4 1.721 (3) C11—H11 0.9300
S3—C6 1.717 (3) C12—C13 1.364 (4)
S4—C7 1.719 (3) C12—H12 0.9300
N1—C3 1.145 (3) C13—H13 0.9300
N2—C1 1.139 (4) C14—C15 1.536 (4)
N3—C8 1.141 (4) C14—H14A 0.9700
N4—C5 1.143 (3) C14—H14B 0.9700
N5—C13 1.341 (4) C15—C16 1.485 (4)
N5—C9 1.344 (3) C15—H15A 0.9700
N5—C14 1.483 (3) C15—H15B 0.9700
C1—C2 1.439 (4) C16—C17 1.527 (5)
C2—C4 1.348 (4) C16—H16A 0.9700
C3—C4 1.435 (4) C16—H16B 0.9700
C5—C6 1.432 (4) C17—H17A 0.9600
C6—C7 1.343 (4) C17—H17B 0.9600
C7—C8 1.440 (4) C17—H17C 0.9600
S2—Ni1—S3 86.97 (3) C11—C10—H10 119.8
S2—Ni1—S4 179.28 (3) C10—C11—C12 118.9 (3)
S3—Ni1—S4 92.59 (3) C10—C11—H11 120.6
S2—Ni1—S1 92.34 (3) C12—C11—H11 120.6
S3—Ni1—S1 177.33 (3) C13—C12—C11 119.0 (3)
S4—Ni1—S1 88.08 (3) C13—C12—H12 120.5
C2—S1—Ni1 103.03 (9) C11—C12—H12 120.5
C4—S2—Ni1 103.36 (9) N5—C13—C12 121.3 (3)
C6—S3—Ni1 102.87 (10) N5—C13—H13 119.3
C7—S4—Ni1 102.92 (9) C12—C13—H13 119.3
C13—N5—C9 119.7 (3) N5—C14—C15 111.1 (2)
C13—N5—C14 119.5 (2) N5—C14—H14A 109.4
C9—N5—C14 120.7 (2) C15—C14—H14A 109.4
N2—C1—C2 178.1 (3) N5—C14—H14B 109.4
C4—C2—C1 121.1 (2) C15—C14—H14B 109.4
C4—C2—S1 121.02 (19) H14A—C14—H14B 108.0
C1—C2—S1 117.88 (19) C16—C15—C14 114.5 (3)
N1—C3—C4 178.3 (3) C16—C15—H15A 108.6
C2—C4—C3 122.3 (2) C14—C15—H15A 108.6
C2—C4—S2 120.21 (19) C16—C15—H15B 108.6
C3—C4—S2 117.5 (2) C14—C15—H15B 108.6
N4—C5—C6 179.3 (3) H15A—C15—H15B 107.6
C7—C6—C5 121.6 (2) C15—C16—C17 111.7 (3)
C7—C6—S3 120.9 (2) C15—C16—H16A 109.3
C5—C6—S3 117.5 (2) C17—C16—H16A 109.3
C6—C7—C8 120.0 (2) C15—C16—H16B 109.3
C6—C7—S4 120.7 (2) C17—C16—H16B 109.3
C8—C7—S4 119.3 (2) H16A—C16—H16B 107.9
N3—C8—C7 176.4 (3) C16—C17—H17A 109.5
N5—C9—C10 120.7 (3) C16—C17—H17B 109.5
N5—C9—H9 119.6 H17A—C17—H17B 109.5
C10—C9—H9 119.6 C16—C17—H17C 109.5
C9—C10—C11 120.3 (3) H17A—C17—H17C 109.5
C9—C10—H10 119.8 H17B—C17—H17C 109.5

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2798).

References

  1. Bruker (2000). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Davison, A. & Holm, H. R. (1967). Inorg. Synth. 10, 8–26.
  3. Duan, H. B., Ren, X. M. & Meng, Q. J. (2010). Coord. Chem. Rev. 254, 1509–1522.
  4. Ni, C. L., Dang, D. B., Song, Y., Song, G., Li, Y. Z., Ni, Z. P., Tian, Z. F., Wen, L. L. & Meng, Q. J. (2004). Chem. Phys. Lett. 396, 353–358.
  5. Ni, Z. P., Ren, X. M., Ma, J., Xie, J. L., Ni, C. L., Chen, Z. D. & Meng, Q. J. (2005). J. Am. Chem. Soc. 127, 14330–14338. [DOI] [PubMed]
  6. Nishijo, J., Ogura, E., Yamaura, J., Miyazaki, A., Enoki, T., Takano, T., Kuwatani, Y. & Lyoda, M. (2000). Solid State Commun. 116, 661–664.
  7. Ren, X. M., Okudera, H., Kremer, R. K., Song, Y., He, C., Meng, Q. J. & Wu, P. H. (2004). Inorg. Chem. 43, 2569–2576. [DOI] [PubMed]
  8. Ren, X. M., Sui, Y. X., Liu, G. X. & Xie, J. L. (2008). J. Phys. Chem. A, 112, 8009–8014. [DOI] [PubMed]
  9. Robertson, N. & Cronin, L. (2002). Coord. Chem. Rev. 227, 93–127.
  10. Sheldrick, G. M. (2002). SADABS University of Göttingen, Germany.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Yao, B. Q., Sun, J. S., Tian, Z. F., Ren, X. M., Gu, D. W., Shen, L. J. & Xie, J. L. (2008). Polyhedron, 27, 2833–2844.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811042103/tk2798sup1.cif

e-67-m1567-sup1.cif (16.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811042103/tk2798Isup2.hkl

e-67-m1567-Isup2.hkl (156.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES