Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 22;67(Pt 11):m1570. doi: 10.1107/S160053681104267X

1-(3,4-Dichloro­benz­yl)pyridinium bis­(2-sulfanyl­idene-1,3-dithiole-4,5-dithiol­ato-κ2 S,S′)nickelate(III)

Guang-Xiang Liu a,*
PMCID: PMC3246987  PMID: 22219807

Abstract

The title compound, (C12H10Cl2N)[Ni(C3S5)2], is an ion-pair complex consisting of 1-(3,4-dichloro­benz­yl)pyridinium cations and [Ni(dmit)2] anions (dmit = 2-sulfanyl­idene-1,3-dithiole-4,5-dithiol­ate). In the anion, the NiIII ion exhibits a square-planar coordination involving four S atoms from two dmit ligands. In the crystal, weak S⋯S [3.368 (2) and 3.482 (3) Å], Ni⋯S [3.680 (2) Å] and Cl⋯S [3.491 (2) Å] inter­actions and C—H⋯S hydrogen bonds lead to a three-dimensional supra­molecular network.

Related literature

For general background to the network topologies and applications of bis­(dithiol­ate)–metal complexes, see: Cassoux (1999). For the synthesis, structures and properties of related complexes containing dmit ligands, see: Akutagawa & Nakamura (2000); Liu et al. (2010); Li et al. (2006); Zang et al. (2006, 2009). For the synthesis of a starting material, see: Wang et al. (1998).graphic file with name e-67-m1570-scheme1.jpg

Experimental

Crystal data

  • (C12H10Cl2N)[Ni(C3S5)2]

  • M r = 690.48

  • Triclinic, Inline graphic

  • a = 9.3711 (11) Å

  • b = 11.7210 (14) Å

  • c = 11.9640 (14) Å

  • α = 82.814 (1)°

  • β = 88.854 (1)°

  • γ = 76.644 (1)°

  • V = 1268.5 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.81 mm−1

  • T = 293 K

  • 0.22 × 0.20 × 0.16 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.692, T max = 0.761

  • 9520 measured reflections

  • 4692 independent reflections

  • 4083 reflections with I > 2σ(I)

  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030

  • wR(F 2) = 0.082

  • S = 1.04

  • 4692 reflections

  • 290 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681104267X/rz2651sup1.cif

e-67-m1570-sup1.cif (21.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681104267X/rz2651Isup2.hkl

e-67-m1570-Isup2.hkl (229.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯S10i 0.93 2.82 3.622 (3) 145
C18—H18⋯S1ii 0.93 2.79 3.708 (3) 168

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant No. 20971004), the Key Project of the Chinese Ministry of Education (grant No. 210102) and the Natural Science Foundation of Anhui Province (grant No. 11040606M45).

supplementary crystallographic information

Comment

Extensive research has been focused on the synthesis and characterization of bis(dithiolate)-metal complexes and their analogues, due to their properties and potential applications as conducting, magnetic and non-linear optical (NLO) materials (Cassoux, 1999). 2-Thioxo-1,3-dithiole-4,5-dithiolate (dmit) metal complexes are in fact excellent building blocks employed for the construction of molecular magnetic materials (Li et al., 2006; Liu et al., 2010; Zang et al., 2006, 2009) apart from their well known electric conductivity as molecular conductors (Akutagawa & Nakamura, 2000). Herein the crystal structure of the title compound, a new ion-pair complex, is reported.

The title compound comprises [Ni(dmit)2]- anions and 1-(3,4-dichlorobenzyl)pyridinium cations (Fig. 1). The Ni ion adopts a square-planar geometry coordinated by four S atoms from two dmit ligands, with Ni—S bond lengths ranging from 2.1518 (7) to 2.1714 (7) Å. The [Ni(dmit)2]- anions are in a parallel arrangement, with S···S interactions ranging from 3.474 (3) to 3.547 (3) Å. Two neighbouring anions are parallel in a face-to-face fashion with the shortest Ni···S distance of 3.680 (2) Å (Ni1—S2i) [symmetry code: (i) -x, -y, -z], indicating the existence of the Ni···S interactions. Adjacent [Ni(dmit)2]- anions are associated together through such Ni···S interactions resulting in a dimer. The dimers are linked together through S9···S3ii and S9···S5ii [symmetry code: (ii) x, 1 + y, z] interactions forming a one-dimensional chain structure, as depicted in Fig. 2. The (C12H10Cl2N)+ cation has a Λ-shaped conformation, and the dihedral angles formed by the C12/C13/N1 plane with the benzene and pyridinium rings are 85.29 (2) and 77.84 (2)°, respectively. Cations and the anions are linked by S···Cl interactions and C—H···S hydrogen bonds to generate a three-dimensional supramolecular structure (Fig. 3).

Experimental

4,5-Di(thiobenzoyl)-1,3-dithiole-2-thione (812 mg, 2 mmol; Wang et al., 1998) was suspended in methanol (10 ml). Sodium methoxide in methanol (prepared form 184 mg of sodium in 10 ml of methanol) was added to the above mixture under argon atmosphere at room temperature from 30 min to give a dark red solution. To this solution, NiCl~2~.6H~2Õ (238 mg, 1 mmol) was added. After 30 min, a solution of I~2~ (127 mg, 1 mmol) and NaI (150 mg, 1 mmol) in methanol (20 ml) was added (the monoanionic [Ni(dmit)~2~]^-^ are obtained from the dianionic [Ni(dmit)~2~]^2-^ by I~3~^-^ oxidation). After another 10 min, a solution of 1-(3,4-dichlorobenzyl)pyridinium bromide [(DiClPy)Br] (317 mg, 1 mmol) in methanol (20 ml) was added to the reaction mixture. The solution was stirred for 30 min and cooled in a refrigerator overnight. The resultant dark green crystalline solid was collected by filtration, and purified by recrystallization using a mixed solution of acetonitrile and benzene (1:1 v/v).

Refinement

H atoms were positioned geometrically, with C—H = 0.93 and 0.97 Å for aromatic and methylene H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.

Fig. 1.

The cation and anion in [DiClPy][Ni(dmit)~2~], showing thermal ellipsoids drawn at the 30% probability level. Hydrogen atoms have been omitted for clarity.

Fig. 2.

Fig. 2.

The one-dimensional chain structure of [Ni(dmit)~2~]- anions through S···S and Ni···S contacts. Dashed lines indicate weak interactions.

Fig. 3.

Fig. 3.

Packing of [DiClPy][Ni(dmit)~2~] viewed along the b axis.

Crystal data

(C12H10Cl2N)[Ni(C3S5)2] Z = 2
Mr = 690.48 F(000) = 694
Triclinic, P1 Dx = 1.808 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.3711 (11) Å Cell parameters from 5426 reflections
b = 11.7210 (14) Å θ = 2.2–27.4°
c = 11.9640 (14) Å µ = 1.81 mm1
α = 82.814 (1)° T = 293 K
β = 88.854 (1)° Block, black
γ = 76.644 (1)° 0.22 × 0.20 × 0.16 mm
V = 1268.5 (3) Å3

Data collection

Bruker SMART APEX CCD area-detector diffractometer 4692 independent reflections
Radiation source: sealed tube 4083 reflections with I > 2σ(I)
graphite Rint = 0.028
phi and ω scans θmax = 25.5°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2000) h = −11→11
Tmin = 0.692, Tmax = 0.761 k = −14→14
9520 measured reflections l = −14→14

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030 H-atom parameters constrained
wR(F2) = 0.082 w = 1/[σ2(Fo2) + (0.037P)2 + 0.5172P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
4692 reflections Δρmax = 0.38 e Å3
290 parameters Δρmin = −0.34 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0118 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.17029 (3) 0.03411 (2) 0.11584 (2) 0.03211 (11)
S1 0.32210 (7) −0.05513 (5) −0.00222 (5) 0.03971 (16)
S2 0.05550 (7) −0.10606 (5) 0.14274 (5) 0.04056 (16)
S3 0.09306 (7) −0.33353 (5) 0.04221 (5) 0.03969 (16)
S4 0.34360 (8) −0.29296 (6) −0.08879 (6) 0.04871 (18)
S5 0.24451 (11) −0.51768 (7) −0.09332 (7) 0.0698 (3)
S6 0.28357 (7) 0.17691 (5) 0.09083 (6) 0.03971 (16)
S7 0.01554 (7) 0.11932 (5) 0.23353 (6) 0.04310 (17)
S8 −0.00090 (8) 0.34602 (6) 0.33578 (6) 0.04481 (17)
S9 0.23172 (7) 0.40488 (5) 0.19675 (6) 0.03994 (16)
S10 0.09387 (8) 0.56899 (6) 0.35872 (6) 0.04947 (19)
C1 0.2605 (3) −0.1815 (2) −0.00797 (19) 0.0345 (5)
C2 0.1445 (3) −0.20223 (19) 0.05421 (19) 0.0325 (5)
C3 0.2283 (3) −0.3877 (2) −0.0501 (2) 0.0436 (6)
C4 0.1888 (3) 0.27107 (19) 0.1800 (2) 0.0333 (5)
C5 0.0760 (3) 0.2457 (2) 0.2430 (2) 0.0355 (5)
C6 0.1081 (3) 0.4452 (2) 0.3007 (2) 0.0363 (5)
C7 0.6079 (3) 0.9937 (2) 0.3192 (2) 0.0501 (7)
H7 0.5323 1.0062 0.2667 0.060*
C8 0.6073 (3) 1.0755 (2) 0.3933 (2) 0.0485 (6)
C9 0.7202 (3) 1.0565 (2) 0.4706 (2) 0.0498 (7)
C10 0.8302 (3) 0.9562 (3) 0.4754 (3) 0.0578 (8)
H10 0.9047 0.9426 0.5290 0.069*
C11 0.8304 (3) 0.8754 (2) 0.4010 (2) 0.0512 (7)
H11 0.9062 0.8080 0.4036 0.061*
C12 0.7197 (3) 0.8940 (2) 0.3231 (2) 0.0445 (6)
C13 0.7260 (4) 0.8061 (3) 0.2393 (2) 0.0553 (8)
H13A 0.6883 0.8484 0.1671 0.066*
H13B 0.8274 0.7663 0.2292 0.066*
C14 0.6972 (3) 0.6255 (2) 0.3536 (2) 0.0453 (6)
H14 0.7872 0.6219 0.3868 0.054*
C15 0.6241 (3) 0.5380 (2) 0.3842 (2) 0.0483 (6)
H15 0.6653 0.4742 0.4371 0.058*
C16 0.4906 (3) 0.5447 (3) 0.3368 (2) 0.0522 (7)
H16 0.4399 0.4858 0.3569 0.063*
C17 0.4328 (3) 0.6394 (3) 0.2594 (3) 0.0576 (8)
H17 0.3413 0.6460 0.2272 0.069*
C18 0.5084 (3) 0.7237 (2) 0.2294 (2) 0.0532 (7)
H18 0.4691 0.7873 0.1760 0.064*
Cl1 0.72732 (13) 1.15957 (9) 0.56077 (8) 0.0904 (3)
Cl2 0.46624 (11) 1.19991 (8) 0.38728 (9) 0.0858 (3)
N1 0.6396 (2) 0.71609 (18) 0.27623 (16) 0.0396 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.03753 (19) 0.02357 (17) 0.03463 (18) −0.00516 (12) 0.00213 (13) −0.00512 (12)
S1 0.0444 (4) 0.0296 (3) 0.0457 (4) −0.0097 (3) 0.0117 (3) −0.0064 (3)
S2 0.0457 (4) 0.0316 (3) 0.0478 (4) −0.0123 (3) 0.0151 (3) −0.0138 (3)
S3 0.0490 (4) 0.0300 (3) 0.0430 (4) −0.0122 (3) 0.0052 (3) −0.0103 (3)
S4 0.0604 (4) 0.0377 (4) 0.0490 (4) −0.0094 (3) 0.0197 (3) −0.0155 (3)
S5 0.1137 (7) 0.0433 (4) 0.0602 (5) −0.0236 (4) 0.0240 (5) −0.0297 (4)
S6 0.0433 (4) 0.0307 (3) 0.0478 (4) −0.0105 (3) 0.0124 (3) −0.0134 (3)
S7 0.0522 (4) 0.0326 (3) 0.0487 (4) −0.0155 (3) 0.0160 (3) −0.0123 (3)
S8 0.0539 (4) 0.0346 (3) 0.0484 (4) −0.0112 (3) 0.0161 (3) −0.0153 (3)
S9 0.0424 (4) 0.0286 (3) 0.0513 (4) −0.0096 (3) 0.0080 (3) −0.0127 (3)
S10 0.0481 (4) 0.0387 (4) 0.0655 (5) −0.0078 (3) 0.0055 (3) −0.0265 (3)
C1 0.0414 (13) 0.0279 (11) 0.0322 (12) −0.0032 (10) 0.0038 (10) −0.0049 (9)
C2 0.0395 (13) 0.0240 (11) 0.0327 (12) −0.0041 (9) −0.0026 (10) −0.0041 (9)
C3 0.0615 (17) 0.0322 (13) 0.0366 (13) −0.0067 (12) 0.0040 (12) −0.0107 (10)
C4 0.0379 (13) 0.0244 (11) 0.0369 (12) −0.0051 (9) −0.0010 (10) −0.0045 (9)
C5 0.0416 (13) 0.0273 (11) 0.0365 (13) −0.0036 (10) 0.0017 (10) −0.0085 (10)
C6 0.0377 (13) 0.0286 (12) 0.0406 (13) −0.0012 (10) −0.0040 (10) −0.0084 (10)
C7 0.0596 (17) 0.0500 (16) 0.0416 (15) −0.0162 (14) −0.0084 (13) −0.0006 (12)
C8 0.0566 (17) 0.0423 (15) 0.0439 (15) −0.0076 (13) 0.0006 (13) −0.0019 (12)
C9 0.0634 (18) 0.0460 (15) 0.0425 (15) −0.0130 (13) 0.0014 (13) −0.0142 (12)
C10 0.0571 (18) 0.0591 (18) 0.0574 (18) −0.0101 (14) −0.0133 (14) −0.0115 (15)
C11 0.0505 (16) 0.0456 (15) 0.0566 (17) −0.0074 (13) 0.0037 (13) −0.0099 (13)
C12 0.0595 (17) 0.0406 (14) 0.0381 (14) −0.0205 (13) 0.0094 (12) −0.0071 (11)
C13 0.083 (2) 0.0518 (16) 0.0410 (15) −0.0342 (16) 0.0201 (14) −0.0110 (12)
C14 0.0390 (14) 0.0527 (16) 0.0428 (15) −0.0092 (12) −0.0013 (11) −0.0024 (12)
C15 0.0506 (16) 0.0469 (15) 0.0432 (15) −0.0080 (12) 0.0037 (12) 0.0039 (12)
C16 0.0549 (17) 0.0564 (17) 0.0527 (17) −0.0257 (14) 0.0091 (14) −0.0125 (14)
C17 0.0458 (16) 0.069 (2) 0.0609 (19) −0.0165 (15) −0.0098 (14) −0.0116 (16)
C18 0.0634 (19) 0.0434 (15) 0.0472 (16) −0.0029 (13) −0.0158 (14) 0.0007 (12)
Cl1 0.1180 (8) 0.0762 (6) 0.0815 (6) −0.0117 (5) −0.0170 (6) −0.0447 (5)
Cl2 0.0858 (6) 0.0596 (5) 0.0972 (7) 0.0171 (5) −0.0164 (5) −0.0142 (5)
N1 0.0488 (12) 0.0408 (12) 0.0321 (11) −0.0139 (10) 0.0058 (9) −0.0106 (9)

Geometric parameters (Å, °)

Ni1—S2 2.1518 (7) C8—C9 1.380 (4)
Ni1—S7 2.1643 (7) C8—Cl2 1.722 (3)
Ni1—S6 2.1681 (7) C9—C10 1.369 (4)
Ni1—S1 2.1714 (7) C9—Cl1 1.731 (3)
S1—C1 1.719 (2) C10—C11 1.378 (4)
S2—C2 1.708 (2) C10—H10 0.9300
S3—C3 1.725 (3) C11—C12 1.370 (4)
S3—C2 1.739 (2) C11—H11 0.9300
S4—C3 1.738 (3) C12—C13 1.515 (4)
S4—C1 1.750 (2) C13—N1 1.493 (3)
S5—C3 1.642 (2) C13—H13A 0.9700
S6—C4 1.717 (2) C13—H13B 0.9700
S7—C5 1.721 (2) C14—N1 1.336 (3)
S8—C6 1.727 (2) C14—C15 1.369 (4)
S8—C5 1.742 (2) C14—H14 0.9300
S9—C6 1.717 (3) C15—C16 1.365 (4)
S9—C4 1.742 (2) C15—H15 0.9300
S10—C6 1.662 (2) C16—C17 1.368 (4)
C1—C2 1.356 (3) C16—H16 0.9300
C4—C5 1.353 (3) C17—C18 1.353 (4)
C7—C12 1.374 (4) C17—H17 0.9300
C7—C8 1.383 (4) C18—N1 1.340 (3)
C7—H7 0.9300 C18—H18 0.9300
S2—Ni1—S7 85.25 (3) C7—C8—Cl2 119.6 (2)
S2—Ni1—S6 179.02 (3) C10—C9—C8 120.1 (3)
S7—Ni1—S6 93.77 (2) C10—C9—Cl1 119.0 (2)
S2—Ni1—S1 93.18 (3) C8—C9—Cl1 120.9 (2)
S7—Ni1—S1 178.41 (3) C9—C10—C11 120.0 (3)
S6—Ni1—S1 87.80 (3) C9—C10—H10 120.0
C1—S1—Ni1 101.80 (8) C11—C10—H10 120.0
C2—S2—Ni1 102.21 (8) C12—C11—C10 120.3 (3)
C3—S3—C2 97.20 (12) C12—C11—H11 119.8
C3—S4—C1 97.08 (12) C10—C11—H11 119.8
C4—S6—Ni1 101.19 (8) C11—C12—C7 119.8 (2)
C5—S7—Ni1 101.47 (9) C11—C12—C13 119.1 (3)
C6—S8—C5 97.19 (11) C7—C12—C13 121.0 (3)
C6—S9—C4 97.89 (11) N1—C13—C12 112.5 (2)
C2—C1—S1 120.90 (18) N1—C13—H13A 109.1
C2—C1—S4 115.57 (18) C12—C13—H13A 109.1
S1—C1—S4 123.50 (14) N1—C13—H13B 109.1
C1—C2—S2 121.87 (17) C12—C13—H13B 109.1
C1—C2—S3 116.76 (18) H13A—C13—H13B 107.8
S2—C2—S3 121.35 (14) N1—C14—C15 120.3 (2)
S5—C3—S3 121.91 (17) N1—C14—H14 119.9
S5—C3—S4 124.71 (17) C15—C14—H14 119.9
S3—C3—S4 113.37 (13) C16—C15—C14 119.7 (3)
C5—C4—S6 122.13 (17) C16—C15—H15 120.1
C5—C4—S9 115.30 (17) C14—C15—H15 120.1
S6—C4—S9 122.56 (14) C15—C16—C17 118.9 (3)
C4—C5—S7 121.35 (18) C15—C16—H16 120.6
C4—C5—S8 116.38 (17) C17—C16—H16 120.6
S7—C5—S8 122.25 (15) C18—C17—C16 120.1 (3)
S10—C6—S9 122.86 (15) C18—C17—H17 119.9
S10—C6—S8 124.01 (15) C16—C17—H17 119.9
S9—C6—S8 113.12 (13) N1—C18—C17 120.5 (3)
C12—C7—C8 120.3 (3) N1—C18—H18 119.7
C12—C7—H7 119.9 C17—C18—H18 119.7
C8—C7—H7 119.9 C14—N1—C18 120.5 (2)
C9—C8—C7 119.5 (3) C14—N1—C13 119.1 (2)
C9—C8—Cl2 120.9 (2) C18—N1—C13 120.4 (2)
S2—Ni1—S1—C1 1.40 (9) Ni1—S7—C5—S8 −175.28 (13)
S6—Ni1—S1—C1 −178.64 (8) C6—S8—C5—C4 1.5 (2)
S7—Ni1—S2—C2 177.99 (8) C6—S8—C5—S7 −179.86 (15)
S1—Ni1—S2—C2 −1.80 (8) C4—S9—C6—S10 178.91 (15)
S7—Ni1—S6—C4 1.33 (8) C4—S9—C6—S8 −2.37 (15)
S1—Ni1—S6—C4 −178.88 (8) C5—S8—C6—S10 179.61 (16)
S2—Ni1—S7—C5 177.64 (9) C5—S8—C6—S9 0.91 (15)
S6—Ni1—S7—C5 −2.31 (9) C12—C7—C8—C9 0.4 (4)
Ni1—S1—C1—C2 −0.6 (2) C12—C7—C8—Cl2 −180.0 (2)
Ni1—S1—C1—S4 −178.50 (13) C7—C8—C9—C10 −1.4 (4)
C3—S4—C1—C2 0.5 (2) Cl2—C8—C9—C10 178.9 (2)
C3—S4—C1—S1 178.56 (16) C7—C8—C9—Cl1 177.3 (2)
S1—C1—C2—S2 −1.1 (3) Cl2—C8—C9—Cl1 −2.3 (4)
S4—C1—C2—S2 177.06 (12) C8—C9—C10—C11 1.7 (5)
S1—C1—C2—S3 −179.55 (12) Cl1—C9—C10—C11 −177.0 (2)
S4—C1—C2—S3 −1.4 (3) C9—C10—C11—C12 −1.1 (5)
Ni1—S2—C2—C1 2.0 (2) C10—C11—C12—C7 0.0 (4)
Ni1—S2—C2—S3 −179.53 (11) C10—C11—C12—C13 177.6 (3)
C3—S3—C2—C1 1.6 (2) C8—C7—C12—C11 0.3 (4)
C3—S3—C2—S2 −176.89 (15) C8—C7—C12—C13 −177.2 (2)
C2—S3—C3—S5 177.82 (17) C11—C12—C13—N1 95.9 (3)
C2—S3—C3—S4 −1.20 (17) C7—C12—C13—N1 −86.5 (3)
C1—S4—C3—S5 −178.40 (18) N1—C14—C15—C16 −1.2 (4)
C1—S4—C3—S3 0.59 (17) C14—C15—C16—C17 0.0 (4)
Ni1—S6—C4—C5 0.4 (2) C15—C16—C17—C18 1.0 (5)
Ni1—S6—C4—S9 179.73 (12) C16—C17—C18—N1 −0.9 (5)
C6—S9—C4—C5 3.5 (2) C15—C14—N1—C18 1.4 (4)
C6—S9—C4—S6 −175.90 (15) C15—C14—N1—C13 −176.2 (2)
S6—C4—C5—S7 −2.6 (3) C17—C18—N1—C14 −0.4 (4)
S9—C4—C5—S7 177.97 (12) C17—C18—N1—C13 177.2 (3)
S6—C4—C5—S8 176.01 (13) C12—C13—N1—C14 −78.8 (3)
S9—C4—C5—S8 −3.4 (3) C12—C13—N1—C18 103.7 (3)
Ni1—S7—C5—C4 3.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C14—H14···S10i 0.93 2.82 3.622 (3) 145
C18—H18···S1ii 0.93 2.79 3.708 (3) 168

Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2651).

References

  1. Akutagawa, T. & Nakamura, T. (2000). Coord. Chem. Rev. 198, 297–311.
  2. Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cassoux, P. (1999). Coord. Chem. Rev. 185–186, 213–232.
  4. Li, J., Yao, L., Su, Y. & Tao, R. (2006). Acta Cryst. E62, m1990–m1991.
  5. Liu, G.-X., Yang, H., Guo, W., Liu, Y., Huang, R.-Y., Nishihara, S. & Ren, X.-M. (2010). Polyhedron, 29, 2916–2923.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Wang, C., Batsanov, A. S., Bryce, M. R. & Howard, J. A. K. (1998). Synthesis, pp. 1615–1618.
  8. Zang, S.-Q., Ren, X.-M., Su, Y., Song, Y., Tong, W.-J., Ni, Z.-P., Zhao, H.-H., Gao, S. & Meng, Q.-J. (2009). Inorg. Chem. 48, 9623–9630. [DOI] [PubMed]
  9. Zang, S.-Q., Su, Y. & Tao, R.-J. (2006). Acta Cryst. E62, m1004–m1005.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681104267X/rz2651sup1.cif

e-67-m1570-sup1.cif (21.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681104267X/rz2651Isup2.hkl

e-67-m1570-Isup2.hkl (229.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES