Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 22;67(Pt 11):m1578. doi: 10.1107/S1600536811042668

Bis(μ-diethyl­phosphido-κ2 P:P)bis­[bis(2,4,6-trimethyl­phen­yl)indium(III)]

Glen G Briand a,*, Andreas Decken b, Dane A Knackstedt a, Caleb D Martin a
PMCID: PMC3246993  PMID: 22219813

Abstract

The title compound, [In2(C9H11)4(C4H10P)2], contains a centrosymmetric In2P2 core with short inter­molecular In—P bonds. This core has acute P—In—P and obtuse In—P—In bond angles compared with other [R 2InPR2]2 analogues, due to the presence of the bulky aromatic substituents on the In atom and the non-sterically demanding ethyl substituents on the P atom.

Related literature

For related dimeric phosphanylindanes, see: Alcock et al. (1989); Wells et al. (1992); Aitchison et al. (1989); Beachley et al. (1987, 1993, 1995, 2001); Culp et al. (1997); Malik et al. (1996); Thomas et al. (2002); Wells et al. (1993); von Hanisch (2001). For related trimeric phosphanylindanes, see: Burns et al. (1994); Werner & Neumüller (1996); Banks et al. (1991).graphic file with name e-67-m1578-scheme1.jpg

Experimental

Crystal data

  • [In2(C9H11)4(C4H10P)2]

  • M r = 884.53

  • Monoclinic, Inline graphic

  • a = 22.323 (4) Å

  • b = 15.494 (4) Å

  • c = 14.331 (3) Å

  • β = 120.618 (4)°

  • V = 4265.6 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.18 mm−1

  • T = 198 K

  • 0.23 × 0.20 × 0.01 mm

Data collection

  • Bruker SMART1000/P4 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a ) T min = 0.777, T max = 0.988

  • 14538 measured reflections

  • 4771 independent reflections

  • 3470 reflections with I > 2σ(I)

  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.078

  • S = 1.09

  • 4771 reflections

  • 225 parameters

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: SMART (Bruker, 1999); cell refinement: SMART; data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b ); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b ); molecular graphics: DIAMOND (Brandenburg, 2011); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b ).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811042668/fj2456sup1.cif

e-67-m1578-sup1.cif (27.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811042668/fj2456Isup2.hkl

e-67-m1578-Isup2.hkl (233.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Natural Sciences and Engineering Research Council of Canada, the New Brunswick Innovation Foundation, the Canadian Foundation for Innovation and Mount Allison University.

supplementary crystallographic information

Comment

Phosphanylindanes [R2InPR'2]n form dimeric or trimeric structures in the solid state via intermolecular In—P coordinate bonding interactions (Beachley et al., 2001; Werner & Neumuller 1996). Dimeric structures feature distorted tetrahedral geometries at indium and phosphorus, and planar four-membered In2P2 ring cores. In—P bond distances within the ring are similar and differ by less than 0.05 Å in all reported structures (Wells et al., 1993). The structure of I (Fig. 1) shows a dimer in the solid state, with a characteristic In2P2 core and distorted tetrahedral geometries at the four coordinate indium and phosphorus centres. The In—P bond distances are similar [In—P = 2.6300 (12) Å, In—Pi = 2.6364 (9) Å] and are in the range for previously reported dimeric phosphanylindanes [2.612 (1)–2.712 (1) Å] (Wells et al., 1993; Beachley et al., 1993). However, the ring P—In—Pi bond angle [81.56 (3)°] is at the lower limit of the range of reported values for [R2InPR'2]2 structures [81.80 (7)–87.53 (3)°] (Beachley et al., 1987; von Hanisch, 2001), and the In—P—Ini bond angle [98.44 (3)°] is at the upper limit of reported values [92.47 (3)–98.20 (7)°] (von Hanisch, 2001; Beachley et al., 1987). The significant distortion of the In2P2 ring is likely a result of the bulky mesityl groups on indium, which affect a compression of the P—In—Pi bond angles. Conversely, the non-bulky ethyl groups on phosphorus allows for expansion of the In—P—Ini bond angles.

Experimental

Preparation of [(2,4,6-Me3C6H2)2InPEt2]2 (I). Trismesityl indium (0.520 g, 1.10 mmol) was added to a solution of diethyl phosphine (0.100 g, 1.10 mmol) in toluene (7.5 ml). The reaction mixture was stirred at 45°C for 72 h, after which time a white precipitate had formed. The precipitate was removed by filtration, dried in vacuo, and washed with toluene (2 × 5 ml) and hexane (3 ml) (yield 0.110 g, 22%). Mp: 188°C. Crystals of I were obtained by dissolving the product in dichloromethane and allowing the solution to sit at 23°C for 12 h.

Refinement

H atoms were included in calculated positions and refined using a riding model.

Figures

Fig. 1.

Fig. 1.

X-ray crystal structure of (I), with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity. Symmetry transformations used to generate equivalent atoms: (i) -x + 1/2, -y + 1/2, -z + 1. Selected bond distances (Å) and angles (°): In—P 2.6300 (12), In—Pi 2.6364 (9), In—C1 2.190 (3), In—C10 2.215 (3), P—C19 1.866 (3), P—C21 1.856 (3), P—In—Pi 81.56 (3), In—P—Ini 98.44 (3), C1—In—C10 117.6 (1), C19—P—C21 104.4 (2).

Crystal data

[In2(C9H11)4(C4H10P)2] F(000) = 1824
Mr = 884.53 Dx = 1.377 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 6933 reflections
a = 22.323 (4) Å θ = 2.7–28.1°
b = 15.494 (4) Å µ = 1.18 mm1
c = 14.331 (3) Å T = 198 K
β = 120.618 (4)° Plate, colourless
V = 4265.6 (17) Å3 0.23 × 0.20 × 0.01 mm
Z = 4

Data collection

Bruker SMART1000/P4 diffractometer 4771 independent reflections
Radiation source: fine-focus sealed tube, K760 3470 reflections with I > 2σ(I)
graphite Rint = 0.038
φ and ω scans θmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a) h = −28→27
Tmin = 0.777, Tmax = 0.988 k = −19→19
14538 measured reflections l = −18→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078 H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0318P)2 + 1.4614P] where P = (Fo2 + 2Fc2)/3
4771 reflections (Δ/σ)max = 0.001
225 parameters Δρmax = 0.65 e Å3
0 restraints Δρmin = −0.34 e Å3

Special details

Experimental. Crystal decay was monitored by repeating the initial 50 frames at the end of the data collection and analyzing duplicate reflectionsNMR data (p.p.m., CDCl3): 1H NMR, 0.88 (m, 6H, PCH2CH3), 1.83 (q, 3J(1H-1H) = 7 Hz, 4H, PCH2CH3), 2.24 (s, 6H, 2,4,6-Me3C6H2), 2.33 (s, 12H, 2,4,6-Me3C6H2), 6.78 (s, 4H, 2,4,6-Me3C6H2); 13C{1H}11.7 (PCH2CH3), 13.8 (PCH2CH3), 21.3 (s, 2,4,6-Me3C6H2), 27.7 (s, 2,4,6-Me3C6H2), 126.8 (s, 2,4,6-Me3C6H2), 136.6 (s, 2,4,6-Me3C6H2), 144.1 (s, 2,4,6-Me3C6H2); 31P NMR, δ -44.63 (s). FT—IR: 538m, 607vw, 673w, 708w, 752w, 800w, 845m, 976w, 1030w, 1042w, 1090w, 1149vw, 1244w, 1259w, 1288w, 1402w, 1547w, 1595vw, 1712vw.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
In1 0.231901 (11) 0.163644 (15) 0.585903 (16) 0.03479 (8)
P1 0.21902 (4) 0.33051 (6) 0.54684 (6) 0.03532 (19)
C1 0.14507 (16) 0.0724 (2) 0.5087 (2) 0.0355 (7)
C2 0.07490 (17) 0.0952 (2) 0.4400 (2) 0.0430 (8)
C3 0.02405 (18) 0.0319 (3) 0.3942 (3) 0.0504 (9)
H3 −0.0230 0.0488 0.3476 0.061*
C4 0.03963 (19) −0.0550 (3) 0.4142 (3) 0.0512 (10)
C5 0.10908 (19) −0.0781 (2) 0.4811 (3) 0.0466 (9)
H5 0.1210 −0.1375 0.4954 0.056*
C6 0.16177 (17) −0.0161 (2) 0.5276 (2) 0.0381 (8)
C7 0.0530 (2) 0.1886 (3) 0.4137 (3) 0.0607 (11)
H7A 0.0020 0.1922 0.3735 0.091*
H7B 0.0710 0.2124 0.3695 0.091*
H7C 0.0716 0.2216 0.4812 0.091*
C8 −0.0172 (2) −0.1223 (3) 0.3645 (4) 0.0719 (13)
H8A −0.0539 −0.1079 0.3803 0.108*
H8B 0.0023 −0.1790 0.3951 0.108*
H8C −0.0369 −0.1236 0.2858 0.108*
C9 0.23652 (17) −0.0451 (2) 0.5954 (3) 0.0464 (8)
H9A 0.2378 −0.1068 0.6114 0.070*
H9B 0.2595 −0.0124 0.6634 0.070*
H9C 0.2607 −0.0350 0.5553 0.070*
C10 0.30035 (17) 0.1564 (2) 0.7643 (2) 0.0394 (8)
C11 0.37154 (17) 0.1357 (2) 0.8185 (2) 0.0427 (8)
C12 0.41094 (19) 0.1333 (2) 0.9321 (3) 0.0512 (9)
H12 0.4590 0.1193 0.9670 0.061*
C13 0.3812 (2) 0.1508 (2) 0.9945 (3) 0.0541 (10)
C14 0.3113 (2) 0.1726 (2) 0.9417 (3) 0.0520 (10)
H14 0.2903 0.1858 0.9834 0.062*
C15 0.27101 (18) 0.1755 (2) 0.8287 (3) 0.0437 (8)
C16 0.40779 (19) 0.1146 (3) 0.7567 (3) 0.0576 (10)
H16A 0.3855 0.0644 0.7102 0.086*
H16B 0.4569 0.1016 0.8080 0.086*
H16C 0.4046 0.1642 0.7119 0.086*
C17 0.4242 (2) 0.1459 (3) 1.1178 (3) 0.0770 (14)
H17A 0.4729 0.1341 1.1407 0.115*
H17B 0.4062 0.0994 1.1433 0.115*
H17C 0.4210 0.2009 1.1488 0.115*
C18 0.19456 (18) 0.1971 (3) 0.7786 (3) 0.0541 (10)
H18A 0.1883 0.2598 0.7698 0.081*
H18B 0.1779 0.1764 0.8260 0.081*
H18C 0.1680 0.1692 0.7076 0.081*
C19 0.29184 (17) 0.3701 (2) 0.6794 (2) 0.0414 (8)
H19A 0.2829 0.3512 0.7371 0.050*
H19B 0.3352 0.3416 0.6930 0.050*
C20 0.30422 (19) 0.4667 (2) 0.6901 (3) 0.0496 (9)
H20A 0.3211 0.4852 0.6421 0.074*
H20B 0.3390 0.4808 0.7653 0.074*
H20C 0.2605 0.4965 0.6698 0.074*
C21 0.14350 (17) 0.3982 (2) 0.5211 (3) 0.0441 (8)
H21A 0.1544 0.4590 0.5144 0.053*
H21B 0.1031 0.3809 0.4505 0.053*
C22 0.12205 (18) 0.3937 (3) 0.6068 (3) 0.0527 (9)
H22A 0.1039 0.3360 0.6063 0.079*
H22B 0.0859 0.4369 0.5905 0.079*
H22C 0.1626 0.4053 0.6785 0.079*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
In1 0.02880 (13) 0.04999 (15) 0.01987 (11) −0.01078 (11) 0.00826 (9) 0.00045 (10)
P1 0.0310 (4) 0.0489 (5) 0.0237 (4) −0.0081 (4) 0.0122 (3) −0.0014 (4)
C1 0.0328 (17) 0.053 (2) 0.0194 (14) −0.0126 (15) 0.0121 (13) −0.0020 (14)
C2 0.0355 (19) 0.059 (2) 0.0300 (17) −0.0130 (17) 0.0137 (15) −0.0048 (16)
C3 0.0330 (19) 0.070 (3) 0.043 (2) −0.0120 (18) 0.0159 (16) −0.0112 (18)
C4 0.042 (2) 0.071 (3) 0.046 (2) −0.026 (2) 0.0267 (18) −0.0234 (19)
C5 0.057 (2) 0.050 (2) 0.045 (2) −0.0126 (18) 0.0349 (19) −0.0124 (16)
C6 0.0377 (18) 0.054 (2) 0.0261 (15) −0.0101 (16) 0.0188 (14) −0.0049 (14)
C7 0.038 (2) 0.068 (3) 0.052 (2) −0.0092 (19) 0.0052 (18) 0.0079 (19)
C8 0.061 (3) 0.085 (3) 0.077 (3) −0.038 (2) 0.040 (2) −0.035 (3)
C9 0.045 (2) 0.053 (2) 0.0365 (19) −0.0034 (18) 0.0176 (17) 0.0005 (16)
C10 0.0374 (18) 0.050 (2) 0.0220 (15) −0.0155 (16) 0.0089 (13) 0.0015 (14)
C11 0.0372 (19) 0.057 (2) 0.0255 (16) −0.0129 (16) 0.0098 (14) 0.0013 (14)
C12 0.038 (2) 0.068 (2) 0.0303 (18) −0.0126 (18) 0.0045 (15) 0.0032 (16)
C13 0.056 (2) 0.069 (3) 0.0236 (17) −0.021 (2) 0.0109 (16) 0.0005 (16)
C14 0.053 (2) 0.072 (3) 0.0273 (17) −0.018 (2) 0.0175 (16) −0.0053 (17)
C15 0.0394 (19) 0.058 (2) 0.0277 (16) −0.0146 (17) 0.0128 (14) 0.0006 (15)
C16 0.040 (2) 0.091 (3) 0.0348 (19) −0.004 (2) 0.0141 (17) 0.002 (2)
C17 0.072 (3) 0.112 (4) 0.0230 (18) −0.021 (3) 0.0070 (18) 0.002 (2)
C18 0.044 (2) 0.080 (3) 0.039 (2) −0.007 (2) 0.0216 (18) 0.0019 (18)
C19 0.0381 (19) 0.058 (2) 0.0238 (16) −0.0072 (16) 0.0126 (14) −0.0021 (14)
C20 0.055 (2) 0.060 (2) 0.0350 (19) −0.0194 (19) 0.0234 (17) −0.0112 (16)
C21 0.0364 (19) 0.057 (2) 0.0365 (18) −0.0003 (17) 0.0165 (15) 0.0003 (16)
C22 0.041 (2) 0.078 (3) 0.0373 (19) −0.004 (2) 0.0193 (17) −0.0078 (18)

Geometric parameters (Å, °)

In1—C1 2.190 (3) C11—C16 1.509 (5)
In1—C10 2.215 (3) C12—C13 1.385 (5)
In1—P1 2.6300 (12) C12—H12 0.9500
In1—P1i 2.6364 (9) C13—C14 1.386 (5)
P1—C21 1.856 (3) C13—C17 1.524 (5)
P1—C19 1.866 (3) C14—C15 1.397 (4)
P1—In1i 2.6364 (9) C14—H14 0.9500
C1—C2 1.406 (4) C15—C18 1.514 (5)
C1—C6 1.409 (5) C16—H16A 0.9800
C2—C3 1.386 (5) C16—H16B 0.9800
C2—C7 1.512 (5) C16—H16C 0.9800
C3—C4 1.384 (5) C17—H17A 0.9800
C3—H3 0.9500 C17—H17B 0.9800
C4—C5 1.392 (5) C17—H17C 0.9800
C4—C8 1.511 (5) C18—H18A 0.9800
C5—C6 1.398 (4) C18—H18B 0.9800
C5—H5 0.9500 C18—H18C 0.9800
C6—C9 1.510 (4) C19—C20 1.515 (5)
C7—H7A 0.9800 C19—H19A 0.9900
C7—H7B 0.9800 C19—H19B 0.9900
C7—H7C 0.9800 C20—H20A 0.9800
C8—H8A 0.9800 C20—H20B 0.9800
C8—H8B 0.9800 C20—H20C 0.9800
C8—H8C 0.9800 C21—C22 1.530 (4)
C9—H9A 0.9800 C21—H21A 0.9900
C9—H9B 0.9800 C21—H21B 0.9900
C9—H9C 0.9800 C22—H22A 0.9800
C10—C11 1.405 (5) C22—H22B 0.9800
C10—C15 1.408 (5) C22—H22C 0.9800
C11—C12 1.402 (4)
C1—In1—C10 117.60 (11) C13—C12—C11 121.4 (3)
C1—In1—P1 123.68 (9) C13—C12—H12 119.3
C10—In1—P1 103.40 (9) C11—C12—H12 119.3
C1—In1—P1i 104.11 (7) C12—C13—C14 118.2 (3)
C10—In1—P1i 122.61 (9) C12—C13—C17 120.9 (4)
P1—In1—P1i 81.56 (3) C14—C13—C17 120.9 (4)
C21—P1—C19 104.40 (16) C13—C14—C15 121.4 (3)
C21—P1—In1 125.97 (11) C13—C14—H14 119.3
C19—P1—In1 99.36 (11) C15—C14—H14 119.3
C21—P1—In1i 120.44 (11) C14—C15—C10 120.9 (3)
C19—P1—In1i 104.85 (10) C14—C15—C18 117.5 (3)
In1—P1—In1i 98.44 (3) C10—C15—C18 121.6 (3)
C2—C1—C6 118.1 (3) C11—C16—H16A 109.5
C2—C1—In1 125.1 (2) C11—C16—H16B 109.5
C6—C1—In1 116.8 (2) H16A—C16—H16B 109.5
C3—C2—C1 120.3 (3) C11—C16—H16C 109.5
C3—C2—C7 118.4 (3) H16A—C16—H16C 109.5
C1—C2—C7 121.3 (3) H16B—C16—H16C 109.5
C4—C3—C2 122.1 (3) C13—C17—H17A 109.5
C4—C3—H3 119.0 C13—C17—H17B 109.5
C2—C3—H3 119.0 H17A—C17—H17B 109.5
C3—C4—C5 117.9 (3) C13—C17—H17C 109.5
C3—C4—C8 120.8 (4) H17A—C17—H17C 109.5
C5—C4—C8 121.3 (4) H17B—C17—H17C 109.5
C4—C5—C6 121.5 (3) C15—C18—H18A 109.5
C4—C5—H5 119.3 C15—C18—H18B 109.5
C6—C5—H5 119.3 H18A—C18—H18B 109.5
C5—C6—C1 120.1 (3) C15—C18—H18C 109.5
C5—C6—C9 119.1 (3) H18A—C18—H18C 109.5
C1—C6—C9 120.8 (3) H18B—C18—H18C 109.5
C2—C7—H7A 109.5 C20—C19—P1 116.6 (2)
C2—C7—H7B 109.5 C20—C19—H19A 108.1
H7A—C7—H7B 109.5 P1—C19—H19A 108.1
C2—C7—H7C 109.5 C20—C19—H19B 108.1
H7A—C7—H7C 109.5 P1—C19—H19B 108.1
H7B—C7—H7C 109.5 H19A—C19—H19B 107.3
C4—C8—H8A 109.5 C19—C20—H20A 109.5
C4—C8—H8B 109.5 C19—C20—H20B 109.5
H8A—C8—H8B 109.5 H20A—C20—H20B 109.5
C4—C8—H8C 109.5 C19—C20—H20C 109.5
H8A—C8—H8C 109.5 H20A—C20—H20C 109.5
H8B—C8—H8C 109.5 H20B—C20—H20C 109.5
C6—C9—H9A 109.5 C22—C21—P1 116.1 (2)
C6—C9—H9B 109.5 C22—C21—H21A 108.3
H9A—C9—H9B 109.5 P1—C21—H21A 108.3
C6—C9—H9C 109.5 C22—C21—H21B 108.3
H9A—C9—H9C 109.5 P1—C21—H21B 108.3
H9B—C9—H9C 109.5 H21A—C21—H21B 107.4
C11—C10—C15 117.3 (3) C21—C22—H22A 109.5
C11—C10—In1 124.8 (2) C21—C22—H22B 109.5
C15—C10—In1 117.9 (2) H22A—C22—H22B 109.5
C12—C11—C10 120.8 (3) C21—C22—H22C 109.5
C12—C11—C16 118.0 (3) H22A—C22—H22C 109.5
C10—C11—C16 121.2 (3) H22B—C22—H22C 109.5

Symmetry codes: (i) −x+1/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2456).

References

  1. Aitchison, K. A., Julius Backer-Dirks, J. D., Bradley, D. C., Faktor, M. M., Frigo, D. M., Hursthouse, M. B., Hussain, B. & Short, R. L. (1989). J. Organomet. Chem. 366, 11–23.
  2. Alcock, N. W., Degnam, I. A., Wallbridge, M. G. H., Powell, H. R., McPartlin, M. & Sheldrick, G. M. (1989). J. Organomet. Chem. 361, C33–C36.
  3. Banks, M. A., Beachley, O. T. Jr, Buttrey, L. A., Churchill, M. R. & Fettinger, J. C. (1991). Organometallics, 10, 1901–1906.
  4. Beachley, O. T. Jr, Chao, S.-H. L., Churchill, M. R. & Lake, C. H. (1993). Organometallics, 12, 3992–3997.
  5. Beachley, O. T. Jr, Chao, S.-H. L., Churchill, M. R. & Lake, C. H. (2001). Organometallics, 20, 4896–4902.
  6. Beachley, O. T. Jr, Kopasz, J. P., Zhang, H., Hunter, W. E. & Atwood, J. L. (1987). J. Organomet. Chem. 325, 69–81.
  7. Beachley, O. T. Jr, Maloney, J. D., Banks, M. A. & Rogers, R. D. (1995). Organometallics, 14, 3448–3454.
  8. Brandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  9. Bruker (1999). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  10. Bruker (2006). SAINT Bruker AXS inc., Madison, Wisconsin, USA.
  11. Burns, J. A., Dillingham, M. D. B., Hill, J. B., Gripper, K. D., Pennington, W. T. & Robinson, G. H. (1994). Organometallics, 13, 1514–1517.
  12. Culp, R. D., Cowley, A. H., Decken, A., Jones, R. A., Bond, M. R., Mokry, L. M. & Carrano, C. J. (1997). Inorg. Chem. 36, 5165-5172.
  13. Hanisch, C. von (2001). Z. Anorg. Allg. Chem. 627, 68–72.
  14. Malik, M. A., Haggata, S. W., Motevalli, M. & O’Brien, P. (1996). J. Organomet. Chem. 524, 95–101.
  15. Sheldrick, G. M. (2008a). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  16. Sheldrick, G. M. (2008b). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Thomas, F., Schulz, S. & Nieger, M. (2002). Z. Anorg. Allg. Chem. 628, 235–242.
  18. Wells, R. L., McPhail, A. T., Jones, L. J. & Self, M. F. (1993). J. Organomet. Chem. 449, 85–94.
  19. Wells, R. L., McPhail, A. T. & Self, M. F. (1992). Organometallics, 11, 221–225.
  20. Werner, B. & Neumüller, B. (1996). Organometallics, 15, 4258–4263.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811042668/fj2456sup1.cif

e-67-m1578-sup1.cif (27.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811042668/fj2456Isup2.hkl

e-67-m1578-Isup2.hkl (233.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES