Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 22;67(Pt 11):m1581–m1582. doi: 10.1107/S1600536811042796

[(4E,11E)-5,7,12,14-Tetra­benzyl-7,14-dimethyl-1,4,8,11-tetra­aza­cyclo­tetra­deca-4,11-diene]copper(II) bis(per­chlorate)

Tapashi G Roy a,, Saroj K S Hazari a, Babul C Nath a, Seik Weng Ng b,c, Edward R T Tiekink b,*
PMCID: PMC3246995  PMID: 22219815

Abstract

The complete cation in the title compound, [Cu(C40H48N4)](ClO4)2, is generated by the operation of a crystallographic centre of inversion. The CuII ion exists in a tetra­gonally distorted trans-N4O2 coordination geometry defined by the four N atoms of the macrocyclic ligand and two weakly bound perchlorate-O atoms from two anions. The N—H atoms form intra­molecular N—H⋯O(perchlorate) hydrogen bonds. Disorder was resolved in the –CH2–NH– portion of the macrocycle with the major component having a site-occupancy factor of 0.570 (6).

Related literature

For background to the synthesis, characterization, kinetic studies and biological activities of 14-membered methyl-substituted tetra­aza­macrocyclic ligands, their N-substituted derivatives and their metal complexes, see: Hazari et al. (2008).graphic file with name e-67-m1581-scheme1.jpg

Experimental

Crystal data

  • [Cu(C40H48N4)](ClO4)2

  • M r = 847.26

  • Monoclinic, Inline graphic

  • a = 10.1170 (3) Å

  • b = 16.6017 (4) Å

  • c = 11.9910 (3) Å

  • β = 108.818 (3)°

  • V = 1906.35 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.77 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.20 mm

Data collection

  • Agilent Technologies SuperNova Dual diffractometer with Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) T min = 0.792, T max = 1.000

  • 9806 measured reflections

  • 4253 independent reflections

  • 3707 reflections with I > 2σ(I)

  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059

  • wR(F 2) = 0.145

  • S = 1.08

  • 4253 reflections

  • 251 parameters

  • 15 restraints

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −1.08 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811042796/hb6449sup1.cif

e-67-m1581-sup1.cif (26.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811042796/hb6449Isup2.hkl

e-67-m1581-Isup2.hkl (208.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Cu—N1 2.032 (4)
Cu—N2 1.977 (2)
Cu—O1 2.662 (2)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.88 2.39 2.940 (5) 121
N1′—H1′⋯O2 0.88 2.29 3.104 (4) 153

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors are grateful to the Bangladesh Ministry of Science, and Information and Communication Technology, Bangladesh, for awarding a research grant to TGR and to the University of Malaya for support of the crystallographic facility.

supplementary crystallographic information

Comment

The title complex, (I), was investigated in continuation of studies of the synthesis, characterization and biological activities of methyl substituted tetraazamacrocyclic ligands and their metal complexes (Hazari et al., 2008).

The structure of (I), Fig. 1, features a tetragonally distorted N4O2 donor set about a CuII atom, Table 1. The N-donor atoms are derived from the (4E,11E)-5,7,12,14-tetrabenzyl-7,14-dimethyl- 1,4,8,11-tetraazacyclotetradeca-4,11-diene macrocyclic ligand, and the O-donors are derived from two perchlorate anions. The complex is centrosymmetric. A C-meso, N-meso configuration is found in (I). With reference to the six-membered chelate ring, the benzyl and methyl groups equatorially and axially orientated, respectively. The dihedral angle formed between the benzene rings is 44.22 (16) Å. Each N—H atom of the disordered —CH2—NH— residue forms an intramolecular N—H···O hydrogen bond with a perchlorate-O atom, Table 2, i.e. to either side of the CuN4 plane. The competition between the formation of these alternate hydrogen bonds provides a rationale for the observed disorder.

Experimental

The macrocyclic ligand as its hydroperchloric acid salt (0.783 g, 1.0 mmol) was suspended in methanol (20 ml). Copper(II) perchlorate hexahydrate (0.370 g, 1.0 mmol) was dissolved in methanol (30 ml) and then was mixed with the suspension of the ligand salt. The mixture was refluxed for 3 h and a clear violet solution evolved. The solution was filtered and kept at room temperature. After 24 h, violet crystals of the complex were observed. The crystals were separated by filtration, washed with dry ethanol, followed by diethylether and dried in a vacuum desiccator over silica gel. M.pt. 510–512 K. Yield 45%. Anal. Calc. for [Cu(C40H48N4)](ClO4)2 C, 56.77; H, 5.56; N, 6.62; Cu, 7.51%. Found: C, 56.56; H, 5.53; N, 6.75; Cu, 7.35%. FT—IR (KBr, cm-1) 3220 ν(N—H), 3028 ν(Ar—H), 2980 ν(C—H), 1650 ν(C═N), 1375 ν(CH3), 1185 ν(C—C), 1126 ν(ClO4), 710 ν(ArC—H)), 488 ν(Cu—N). The light-purple prisms were prepared by slow evaporation of a methanol solution of the complex.

Refinement

One portion of the macrocycle, i.e. the –CH2–NH– portion, is disordered over two positions, with the major component having a site occupancy factor = 0.570 (6). The pair of Cu—N distances were tightly restrained to within 0.005 Å of each other, as were the C—N and Cdisordered—Cordered distances. The H-atoms were placed in calculated positions (N—H = 0.88 Å and C—H = 0.95–0.99 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2–1.5Uequiv(N,C). The maximum and minimum residual electron density peaks of 0.64 and 1.08 e Å-3, respectively, were located 1.00 Å and 0.94 Å from the O4 and Cu atoms, respectively.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing displacement ellipsoids at the 50% probability level. Only the major component of the disordered residue is shown. Unlabelled atoms are generated by the symmetry operation (1–x, 1–y, 1–z).

Crystal data

[Cu(C40H48N4)](ClO4)2 F(000) = 886
Mr = 847.26 Dx = 1.476 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 4647 reflections
a = 10.1170 (3) Å θ = 2.3–29.3°
b = 16.6017 (4) Å µ = 0.77 mm1
c = 11.9910 (3) Å T = 100 K
β = 108.818 (3)° Prism, light-purple
V = 1906.35 (9) Å3 0.30 × 0.25 × 0.20 mm
Z = 2

Data collection

Agilent Technologies SuperNova Dual diffractometer with Atlas detector 4253 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 3707 reflections with I > 2σ(I)
Mirror Rint = 0.024
Detector resolution: 10.4041 pixels mm-1 θmax = 27.5°, θmin = 2.3°
ω scan h = −11→12
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) k = −21→16
Tmin = 0.792, Tmax = 1.000 l = −15→15
9806 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145 H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0495P)2 + 4.3222P] where P = (Fo2 + 2Fc2)/3
4253 reflections (Δ/σ)max < 0.001
251 parameters Δρmax = 0.64 e Å3
15 restraints Δρmin = −1.08 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cu 0.5000 0.5000 0.5000 0.0368 (2)
Cl1 0.85496 (8) 0.59569 (5) 0.64594 (7) 0.0320 (2)
O1 0.7221 (2) 0.59629 (15) 0.5522 (2) 0.0349 (6)
O2 0.8616 (3) 0.52613 (18) 0.7184 (3) 0.0520 (8)
O3 0.9641 (3) 0.5963 (2) 0.5963 (3) 0.0660 (10)
O4 0.8647 (3) 0.66693 (18) 0.7171 (2) 0.0492 (7)
N1 0.4748 (5) 0.4782 (3) 0.6587 (3) 0.0245 (10) 0.570 (6)
H1 0.4019 0.4462 0.6445 0.029* 0.570 (6)
N2 0.6240 (3) 0.40479 (15) 0.5342 (2) 0.0239 (5)
C1 0.6015 (5) 0.4282 (3) 0.7295 (4) 0.0277 (11) 0.570 (6)
H1A 0.6845 0.4631 0.7610 0.033* 0.570 (6)
H1B 0.5825 0.4011 0.7964 0.033* 0.570 (6)
C2 0.6264 (3) 0.36629 (19) 0.6456 (3) 0.0261 (7)
H2A 0.7181 0.3401 0.6825 0.031* 0.570 (6)
H2B 0.5533 0.3242 0.6294 0.031* 0.570 (6)
H2C 0.7195 0.3726 0.7058 0.031* 0.430 (6)
H2D 0.6056 0.3081 0.6334 0.031* 0.430 (6)
C3 0.7012 (3) 0.3815 (2) 0.4734 (3) 0.0257 (6)
C4 0.7948 (3) 0.3080 (2) 0.4994 (3) 0.0282 (7)
H4A 0.8072 0.2883 0.5800 0.034*
H4B 0.8878 0.3221 0.4943 0.034*
C5 0.7277 (3) 0.2425 (2) 0.4096 (3) 0.0281 (7)
C6 0.6296 (4) 0.1915 (2) 0.4294 (3) 0.0352 (8)
H6 0.6083 0.1955 0.5008 0.042*
C7 0.5617 (4) 0.1344 (2) 0.3456 (4) 0.0399 (9)
H7 0.4942 0.0999 0.3601 0.048*
C8 0.5919 (4) 0.1277 (2) 0.2413 (3) 0.0379 (8)
H8 0.5445 0.0892 0.1836 0.045*
C9 0.6922 (4) 0.1776 (2) 0.2218 (3) 0.0374 (8)
H9 0.7144 0.1728 0.1510 0.045*
C10 0.7604 (3) 0.2349 (2) 0.3059 (3) 0.0309 (7)
H10 0.8294 0.2687 0.2923 0.037*
C11 0.7003 (4) 0.4281 (2) 0.3652 (3) 0.0316 (7)
H11A 0.7518 0.3964 0.3226 0.038*
H11B 0.7527 0.4789 0.3911 0.038*
C12 0.5570 (4) 0.4493 (2) 0.2784 (3) 0.0303 (7)
C13 0.5729 (4) 0.4799 (2) 0.1621 (3) 0.0354 (8)
H13A 0.4791 0.4937 0.1074 0.042*
H13B 0.6288 0.5301 0.1784 0.042*
C14 0.4581 (3) 0.3778 (3) 0.2546 (3) 0.0391 (9)
H14A 0.3668 0.3939 0.2004 0.059*
H14B 0.4477 0.3591 0.3288 0.059*
H14C 0.4962 0.3341 0.2191 0.059*
C15 0.6410 (4) 0.42125 (19) 0.1011 (3) 0.0280 (7)
C16 0.5637 (3) 0.36046 (19) 0.0285 (3) 0.0268 (7)
H16 0.4664 0.3561 0.0163 0.032*
C17 0.6273 (3) 0.3066 (2) −0.0260 (3) 0.0287 (7)
H17 0.5736 0.2650 −0.0742 0.034*
C18 0.7686 (4) 0.3126 (2) −0.0109 (3) 0.0316 (7)
H18 0.8120 0.2756 −0.0485 0.038*
C19 0.8455 (4) 0.3731 (2) 0.0598 (3) 0.0366 (8)
H19 0.9421 0.3784 0.0698 0.044*
C20 0.7815 (3) 0.42676 (17) 0.1166 (2) 0.0331 (8)
H20 0.8358 0.4674 0.1665 0.040*
N1' 0.5452 (3) 0.49931 (17) 0.6741 (2) 0.0245 (10) 0.43
H1' 0.6332 0.5119 0.7103 0.029* 0.430 (6)
C1' 0.5178 (3) 0.40711 (17) 0.6846 (2) 0.0277 (11) 0.43
H1'1 0.5276 0.3925 0.7670 0.033* 0.430 (6)
H1'2 0.4230 0.3922 0.6333 0.033* 0.430 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu 0.0564 (4) 0.0281 (3) 0.0199 (3) 0.0258 (3) 0.0039 (3) 0.0029 (2)
Cl1 0.0177 (4) 0.0351 (4) 0.0413 (4) −0.0034 (3) 0.0068 (3) 0.0122 (4)
O1 0.0232 (12) 0.0389 (14) 0.0379 (13) 0.0015 (10) 0.0034 (10) −0.0016 (11)
O2 0.0465 (17) 0.0398 (15) 0.0623 (19) −0.0023 (13) 0.0074 (14) 0.0250 (14)
O3 0.0303 (15) 0.092 (3) 0.087 (2) −0.0031 (16) 0.0339 (16) 0.013 (2)
O4 0.0510 (17) 0.0442 (16) 0.0411 (15) −0.0104 (13) −0.0008 (13) 0.0021 (13)
N1 0.023 (2) 0.022 (2) 0.0222 (18) 0.0091 (17) −0.0004 (19) 0.0010 (15)
N2 0.0225 (12) 0.0202 (12) 0.0252 (12) 0.0015 (10) 0.0024 (10) 0.0019 (10)
C1 0.025 (2) 0.034 (3) 0.026 (2) 0.013 (2) 0.0118 (18) 0.012 (2)
C2 0.0249 (15) 0.0244 (15) 0.0294 (16) 0.0057 (12) 0.0091 (13) 0.0081 (13)
C3 0.0182 (14) 0.0273 (16) 0.0282 (15) −0.0013 (12) 0.0030 (12) 0.0037 (13)
C4 0.0182 (14) 0.0398 (18) 0.0266 (15) 0.0081 (13) 0.0075 (12) 0.0064 (14)
C5 0.0245 (15) 0.0303 (17) 0.0304 (16) 0.0158 (13) 0.0100 (13) 0.0096 (14)
C6 0.0354 (19) 0.0325 (18) 0.0418 (19) 0.0103 (15) 0.0183 (16) 0.0068 (16)
C7 0.038 (2) 0.0305 (18) 0.054 (2) 0.0072 (15) 0.0194 (18) 0.0029 (17)
C8 0.039 (2) 0.0277 (17) 0.042 (2) 0.0112 (15) 0.0063 (16) 0.0020 (16)
C9 0.042 (2) 0.039 (2) 0.0307 (17) 0.0218 (16) 0.0109 (15) 0.0106 (16)
C10 0.0245 (16) 0.0341 (18) 0.0361 (17) 0.0140 (13) 0.0127 (13) 0.0116 (15)
C11 0.0306 (17) 0.0320 (17) 0.0278 (16) −0.0083 (14) 0.0033 (13) 0.0067 (14)
C12 0.0353 (18) 0.0277 (16) 0.0266 (15) 0.0127 (14) 0.0081 (13) 0.0019 (13)
C13 0.051 (2) 0.0247 (16) 0.0234 (16) 0.0058 (15) 0.0021 (15) 0.0004 (13)
C14 0.0204 (16) 0.066 (3) 0.0304 (17) −0.0019 (16) 0.0080 (13) −0.0073 (18)
C15 0.0372 (18) 0.0224 (15) 0.0204 (14) 0.0005 (13) 0.0035 (13) 0.0043 (12)
C16 0.0258 (15) 0.0268 (16) 0.0243 (15) −0.0018 (13) 0.0030 (12) 0.0009 (13)
C17 0.0320 (17) 0.0268 (16) 0.0258 (15) −0.0046 (13) 0.0072 (13) −0.0018 (13)
C18 0.0318 (17) 0.0381 (19) 0.0268 (16) −0.0006 (15) 0.0120 (14) 0.0002 (15)
C19 0.0298 (17) 0.051 (2) 0.0269 (16) −0.0090 (16) 0.0058 (14) −0.0010 (16)
C20 0.0376 (19) 0.0343 (18) 0.0235 (15) −0.0129 (15) 0.0046 (14) −0.0011 (14)
N1' 0.023 (2) 0.022 (2) 0.0222 (18) 0.0091 (17) −0.0004 (19) 0.0010 (15)
C1' 0.025 (2) 0.034 (3) 0.026 (2) 0.013 (2) 0.0118 (18) 0.012 (2)

Geometric parameters (Å, °)

Cu—N1 2.032 (4) C7—H7 0.9500
Cu—N2 1.977 (2) C8—C9 1.386 (6)
Cu—N2i 1.977 (2) C8—H8 0.9500
Cu—N1'i 1.988 (2) C9—C10 1.396 (5)
Cu—N1' 1.988 (2) C9—H9 0.9500
Cu—N1i 2.032 (4) C10—H10 0.9500
Cu—O1i 2.662 (2) C11—C12 1.528 (5)
Cu—O1 2.662 (2) C11—H11A 0.9900
Cl1—O3 1.413 (3) C11—H11B 0.9900
Cl1—O2 1.433 (3) C12—N1i 1.510 (5)
Cl1—O4 1.443 (3) C12—C14 1.519 (5)
Cl1—O1 1.447 (2) C12—C13 1.541 (5)
N1—C12i 1.510 (5) C12—N1'i 1.582 (4)
N1—C1 1.534 (4) C13—C15 1.511 (5)
N1—H1 0.8800 C13—H13A 0.9900
N2—C3 1.287 (4) C13—H13B 0.9900
N2—C2 1.475 (4) C14—H14A 0.9800
C1—C2 1.515 (5) C14—H14B 0.9800
C1—H1A 0.9900 C14—H14C 0.9800
C1—H1B 0.9900 C15—C20 1.376 (4)
C2—C1' 1.489 (4) C15—C16 1.396 (4)
C2—H2A 0.9900 C16—C17 1.383 (5)
C2—H2B 0.9900 C16—H16 0.9500
C2—H2C 0.9900 C17—C18 1.385 (5)
C2—H2D 0.9900 C17—H17 0.9500
C3—C4 1.514 (4) C18—C19 1.381 (5)
C3—C11 1.509 (4) C18—H18 0.9500
C4—C5 1.527 (5) C19—C20 1.400 (5)
C4—H4A 0.9900 C19—H19 0.9500
C4—H4B 0.9900 C20—H20 0.9500
C5—C6 1.383 (5) N1'—C1' 1.5679
C5—C10 1.392 (4) N1'—C12i 1.582 (4)
C6—C7 1.390 (5) N1'—H1' 0.8800
C6—H6 0.9500 C1'—H1'1 0.9900
C7—C8 1.385 (5) C1'—H1'2 0.9900
O1—Cu—N1 103.76 (15) H4A—C4—H4B 108.3
O1—Cu—N2 90.01 (9) C6—C5—C10 119.3 (3)
N2—Cu—N2i 180 C6—C5—C4 119.7 (3)
N2—Cu—N1'i 97.92 (11) C10—C5—C4 121.0 (3)
N2i—Cu—N1'i 82.08 (11) C5—C6—C7 120.5 (3)
N2—Cu—N1' 82.08 (11) C5—C6—H6 119.7
N2i—Cu—N1' 97.92 (11) C7—C6—H6 119.7
N1'i—Cu—N1' 180 C8—C7—C6 120.4 (4)
N2—Cu—N1i 94.20 (14) C8—C7—H7 119.8
N2i—Cu—N1i 85.80 (14) C6—C7—H7 119.8
N1'i—Cu—N1i 21.80 (14) C7—C8—C9 119.3 (4)
N1'—Cu—N1i 158.20 (15) C7—C8—H8 120.3
N1—Cu—N2 85.80 (14) C9—C8—H8 120.3
N2i—Cu—N1 94.20 (14) C10—C9—C8 120.3 (3)
N1'i—Cu—N1 158.20 (15) C10—C9—H9 119.9
N1'—Cu—N1 21.80 (14) C8—C9—H9 119.9
N1i—Cu—N1 180 C9—C10—C5 120.1 (3)
N2—Cu—O1i 89.99 (9) C9—C10—H10 119.9
N2i—Cu—O1i 90.01 (9) C5—C10—H10 119.9
N1'i—Cu—O1i 82.27 (10) C3—C11—C12 116.4 (3)
N1'—Cu—O1i 97.73 (10) C3—C11—H11A 108.2
N1i—Cu—O1i 103.76 (15) C12—C11—H11A 108.2
N1—Cu—O1i 76.24 (15) C3—C11—H11B 108.2
N2i—Cu—O1 89.99 (9) C12—C11—H11B 108.2
N1'i—Cu—O1 97.73 (10) H11A—C11—H11B 107.3
N1'—Cu—O1 82.27 (10) N1i—C12—C14 118.9 (3)
N1i—Cu—O1 76.24 (15) N1i—C12—C11 98.7 (3)
O1i—Cu—O1 180.0 C14—C12—C11 111.8 (3)
O3—Cl1—O2 111.7 (2) N1i—C12—C13 106.9 (3)
O3—Cl1—O4 109.3 (2) C14—C12—C13 110.0 (3)
O2—Cl1—O4 108.75 (18) C11—C12—C13 109.8 (3)
O3—Cl1—O1 109.20 (19) C14—C12—N1'i 91.3 (3)
O2—Cl1—O1 109.04 (16) C11—C12—N1'i 117.8 (3)
O4—Cl1—O1 108.80 (16) C13—C12—N1'i 114.8 (3)
Cl1—O1—Cu 132.88 (15) C15—C13—C12 115.0 (3)
C12i—N1—C1 115.5 (3) C15—C13—H13A 108.5
C12i—N1—Cu 115.9 (3) C12—C13—H13A 108.5
C1—N1—Cu 106.3 (3) C15—C13—H13B 108.5
C12i—N1—H1 106.1 C12—C13—H13B 108.5
C1—N1—H1 106.1 H13A—C13—H13B 107.5
Cu—N1—H1 106.1 C12—C14—H14A 109.5
C3—N2—C2 123.2 (3) C12—C14—H14B 109.5
C3—N2—Cu 125.7 (2) H14A—C14—H14B 109.5
C2—N2—Cu 110.97 (19) C12—C14—H14C 109.5
C2—C1—N1 106.7 (3) H14A—C14—H14C 109.5
C2—C1—H1A 110.4 H14B—C14—H14C 109.5
N1—C1—H1A 110.4 C20—C15—C16 118.6 (3)
C2—C1—H1B 110.4 C20—C15—C13 120.3 (3)
N1—C1—H1B 110.4 C16—C15—C13 121.1 (3)
H1A—C1—H1B 108.6 C17—C16—C15 120.6 (3)
N2—C2—C1' 106.8 (2) C17—C16—H16 119.7
N2—C2—C1 110.5 (3) C15—C16—H16 119.7
N2—C2—H2A 109.5 C16—C17—C18 120.6 (3)
C1'—C2—H2A 137.7 C16—C17—H17 119.7
C1—C2—H2A 109.5 C18—C17—H17 119.7
N2—C2—H2B 109.5 C19—C18—C17 119.1 (3)
C1'—C2—H2B 78.6 C19—C18—H18 120.5
C1—C2—H2B 109.5 C17—C18—H18 120.5
H2A—C2—H2B 108.1 C18—C19—C20 120.3 (3)
N2—C2—H2C 110.4 C18—C19—H19 119.9
C1'—C2—H2C 110.4 C20—C19—H19 119.9
C1—C2—H2C 76.6 C15—C20—C19 120.7 (3)
H2B—C2—H2C 133.9 C15—C20—H20 119.6
N2—C2—H2D 110.4 C19—C20—H20 119.6
C1'—C2—H2D 110.4 C1'—N1'—C12i 110.16 (17)
C1—C2—H2D 133.4 C1'—N1'—Cu 95.92 (8)
H2A—C2—H2D 76.1 C12i—N1'—Cu 114.78 (19)
H2C—C2—H2D 108.6 C1'—N1'—H1' 111.7
N2—C3—C4 125.4 (3) C12i—N1'—H1' 111.7
N2—C3—C11 119.8 (3) Cu—N1'—H1' 111.7
C4—C3—C11 114.8 (3) C2—C1'—N1' 104.57 (17)
C3—C4—C5 108.8 (2) C2—C1'—H1'1 110.8
C3—C4—H4A 109.9 N1'—C1'—H1'1 110.8
C5—C4—H4A 109.9 C2—C1'—H1'2 110.8
C3—C4—H4B 109.9 N1'—C1'—H1'2 110.8
C5—C4—H4B 109.9 H1'1—C1'—H1'2 108.9
O3—Cl1—O1—Cu 124.9 (2) C3—C4—C5—C6 −85.3 (4)
O2—Cl1—O1—Cu 2.5 (3) C3—C4—C5—C10 92.6 (3)
O4—Cl1—O1—Cu −115.9 (2) C10—C5—C6—C7 −1.5 (5)
N2—Cu—O1—Cl1 −43.1 (2) C4—C5—C6—C7 176.4 (3)
N2i—Cu—O1—Cl1 136.9 (2) C5—C6—C7—C8 0.3 (5)
N1'i—Cu—O1—Cl1 −141.1 (2) C6—C7—C8—C9 0.9 (5)
N1'—Cu—O1—Cl1 38.9 (2) C7—C8—C9—C10 −0.9 (5)
N1i—Cu—O1—Cl1 −137.4 (2) C8—C9—C10—C5 −0.3 (5)
N1—Cu—O1—Cl1 42.6 (2) C6—C5—C10—C9 1.5 (5)
N2—Cu—N1—C12i 151.7 (3) C4—C5—C10—C9 −176.4 (3)
N2i—Cu—N1—C12i −28.3 (3) N2—C3—C11—C12 −48.0 (4)
N1'i—Cu—N1—C12i −107.5 (5) C4—C3—C11—C12 130.8 (3)
N1'—Cu—N1—C12i 72.5 (5) C3—C11—C12—N1i 80.6 (4)
O1i—Cu—N1—C12i −117.3 (3) C3—C11—C12—C14 −45.5 (4)
O1—Cu—N1—C12i 62.7 (3) C3—C11—C12—C13 −167.9 (3)
N2—Cu—N1—C1 21.9 (3) C3—C11—C12—N1'i 58.3 (4)
N2i—Cu—N1—C1 −158.1 (3) N1i—C12—C13—C15 164.9 (3)
N1'i—Cu—N1—C1 122.7 (4) C14—C12—C13—C15 −64.7 (4)
N1'—Cu—N1—C1 −57.3 (4) C11—C12—C13—C15 58.7 (4)
O1i—Cu—N1—C1 112.9 (3) N1'i—C12—C13—C15 −165.9 (3)
O1—Cu—N1—C1 −67.1 (3) C12—C13—C15—C20 −96.7 (4)
N1'i—Cu—N2—C3 30.0 (3) C12—C13—C15—C16 83.1 (4)
N1'—Cu—N2—C3 −150.0 (3) C20—C15—C16—C17 0.5 (5)
N1i—Cu—N2—C3 8.4 (3) C13—C15—C16—C17 −179.3 (3)
N1—Cu—N2—C3 −171.6 (3) C15—C16—C17—C18 −0.9 (5)
O1i—Cu—N2—C3 112.2 (3) C16—C17—C18—C19 0.2 (5)
O1—Cu—N2—C3 −67.8 (3) C17—C18—C19—C20 1.0 (5)
N1'i—Cu—N2—C2 −154.7 (2) C16—C15—C20—C19 0.7 (4)
N1'—Cu—N2—C2 25.3 (2) C13—C15—C20—C19 −179.5 (3)
N1i—Cu—N2—C2 −176.3 (2) C18—C19—C20—C15 −1.5 (5)
N1—Cu—N2—C2 3.7 (2) N2—Cu—N1'—C1' −47.47 (8)
O1i—Cu—N2—C2 −72.5 (2) N2i—Cu—N1'—C1' 132.53 (8)
O1—Cu—N2—C2 107.5 (2) N1i—Cu—N1'—C1' −128.9 (4)
C12i—N1—C1—C2 −172.4 (4) N1—Cu—N1'—C1' 51.1 (4)
Cu—N1—C1—C2 −42.3 (4) O1i—Cu—N1'—C1' 41.44 (6)
C3—N2—C2—C1' −176.9 (3) O1—Cu—N1'—C1' −138.56 (6)
Cu—N2—C2—C1' 7.7 (3) N2—Cu—N1'—C12i −162.9 (2)
C3—N2—C2—C1 145.9 (3) N2i—Cu—N1'—C12i 17.1 (2)
Cu—N2—C2—C1 −29.6 (3) N1i—Cu—N1'—C12i 115.6 (4)
N1—C1—C2—N2 47.6 (5) N1—Cu—N1'—C12i −64.4 (4)
N1—C1—C2—C1' −42.7 (3) O1i—Cu—N1'—C12i −74.0 (2)
C2—N2—C3—C4 5.9 (5) O1—Cu—N1'—C12i 106.0 (2)
Cu—N2—C3—C4 −179.3 (2) N2—C2—C1'—N1' −48.2 (2)
C2—N2—C3—C11 −175.4 (3) C1—C2—C1'—N1' 53.7 (4)
Cu—N2—C3—C11 −0.6 (4) C12i—N1'—C1'—C2 −176.1 (3)
N2—C3—C4—C5 106.0 (4) Cu—N1'—C1'—C2 64.78 (16)
C11—C3—C4—C5 −72.8 (3)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.88 2.39 2.940 (5) 121
N1'—H1'···O2 0.88 2.29 3.104 (4) 153

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6449).

References

  1. Agilent (2010). CrysAlis PRO Agilent Technologies, Yarnton, Oxfordshire, England.
  2. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Hazari, S. K. S., Roy, S. K. S., Barua, K. K. & Tiekink, E. R. T. (2008). J. Chem. Crystallogr. 38, 1–8.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811042796/hb6449sup1.cif

e-67-m1581-sup1.cif (26.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811042796/hb6449Isup2.hkl

e-67-m1581-Isup2.hkl (208.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES