Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 8;67(Pt 11):o2899. doi: 10.1107/S1600536811040992

N-(3-Chloro­phen­yl)-4-methyl­benzamide hemihydrate

Vinola Z Rodrigues a, Lenka Kucková b, B Thimme Gowda a,*, Jozef Kožíšek b
PMCID: PMC3247315  PMID: 22219933

Abstract

In the title compound, C14H12ClNO·0.5H2O, the water mol­ecule is located on a twofold axis of symmetry. The meta-Cl atom in the aniline ring is positioned anti to the N—H bond. The two benzene rings make a dihedral angle of 40.40 (11)°. The crystal structure is stabilized by inter­molecular N—H⋯O and O—H⋯O hydrogen bonds, which link the mol­ecules into chains along the a axis.

Related literature

For the preparation of the title compound, see: Gowda et al. (2003). For studies on the effects of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Bowes et al. (2003); Gowda et al. (1999); Rodrigues et al. (2011); Saeed et al. (2010), on N-(ar­yl)-methane­sulfonamides, see: Gowda et al. (2007), on N-(ar­yl)-aryl­sulfonamides, see: Shetty & Gowda (2005) and on N-chloro-aryl­sulfonamides, see: Gowda & Shetty (2004). graphic file with name e-67-o2899-scheme1.jpg

Experimental

Crystal data

  • C14H12ClNO·0.5H2O

  • M r = 254.71

  • Monoclinic, Inline graphic

  • a = 7.8078 (3) Å

  • b = 12.1704 (5) Å

  • c = 27.1217 (9) Å

  • β = 93.564 (3)°

  • V = 2572.24 (17) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 298 K

  • 0.76 × 0.34 × 0.02 mm

Data collection

  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: analytical [CrysAlis RED (Oxford Diffraction, 2009), based on expressions derived from Clark & Reid (1995)] T min = 0.890, T max = 0.993

  • 3313 measured reflections

  • 3313 independent reflections

  • 1943 reflections with I > 2σ(I)

  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.058

  • wR(F 2) = 0.142

  • S = 1.01

  • 3313 reflections

  • 169 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2002); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811040992/bq2309sup1.cif

e-67-o2899-sup1.cif (17.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811040992/bq2309Isup2.hkl

e-67-o2899-Isup2.hkl (162.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811040992/bq2309Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.86 (2) 2.11 (2) 2.947 (2) 167 (2)
O2—H2O⋯O1ii 0.84 (2) 1.92 (2) 2.7630 (19) 176 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

LK and JK thank the VEGA Grant Agency of Slovak Ministry of Education 1/0679/11, the Research and Development Agency of Slovakia (APVV-0202–10) for financial support of this work and the Structural Funds, Inter­reg IIIA, for financial support in purchasing the diffractometer. VZR thanks the University Grants Commission, Government of India, New Delhi, for award of an RFSMS research fellowship.

supplementary crystallographic information

Comment

The amide and sulfonamide moieties are the constituents of many biologically significant compounds. As part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Bowes et al., 2003; Gowda et al., 1999; Saeed et al., 2010; Rodrigues et al., 2011), N-(aryl)-methanesulfonamides (Gowda et al., 2007), N-(aryl)-arylsulfonamides (Shetty & Gowda, 2005) and N-chloro-arylsulfonamides (Gowda & Shetty, 2004), in the present work, the crystal structure of N-(3-Chlorophenyl)- 4-methylbenzamide (I) has been determined (Fig.1).

In (I), the water molecule is in special position and connects the different molecules of the compound. Further, the meta-Cl atom in the anilino ring is positioned anti to the N–H bond. The N—H and C=O bonds in the C—NH—C(O)—C segment are anti to each other, similar to that observed in N-(2-chlorophenyl)- 4-methylbenzamide (Rodrigues et al., 2011). The C(benzoyl)—NH—C(O)—C(anilino) torsional angle is -172.65 (18)°.

The packing of molecules linked by N1—H1N···O2 and O2—H2O···O1 hydrogen bonds into infinite chains is shown in Fig. 2.

Experimental

The title compound was prepared according to the method described by Gowda et al. (2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Plate like colourless single crystals of the title compound were obtained by slow evaporation of an ethanol solution of the compound (0.5 g in about 30 ml of ethanol) at room temperature.

Refinement

The C- and N- bound hydrogen atoms were positioned with idealized geometry using a riding model with C–H distances of 0.93Å (C-aromatic), 0.96Å (C-methyl) and N-H = 0.86 Å. The water hydrogen atoms are symmetry related, were seen in difference Fourier maps and were refined as free. The Uiso(H) values were set at 1.2Ueq(C aromatic, N, O) and 1.5Ueq(C methyl). The disordered methyl group was refined using constrain 138

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound showing the atom labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Part of the crystal structure of the title compound. Molecular chains are generated by N—H···O and O—H···O hydrogen bonds which are shown by dashed lines. H atoms not involved in intermolecular bonding have been omitted.

Crystal data

C14H12ClNO·0.5H2O F(000) = 1064
Mr = 254.71 Dx = 1.315 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 21518 reflections
a = 7.8078 (3) Å θ = 3.5–29.4°
b = 12.1704 (5) Å µ = 0.29 mm1
c = 27.1217 (9) Å T = 298 K
β = 93.564 (3)° Plate, colorless
V = 2572.24 (17) Å3 0.76 × 0.34 × 0.02 mm
Z = 8

Data collection

Oxford Diffraction Xcalibur Ruby Gemini diffractometer 3313 independent reflections
Radiation source: fine-focus sealed tube 1943 reflections with I > 2σ(I)
graphite Rint = 0.040
Detector resolution: 10.4340 pixels mm-1 θmax = 29.5°, θmin = 3.5°
ω scans h = −10→10
Absorption correction: analytical [CrysAlis RED (Oxford Diffraction, 2009), based on expressions derived from Clark & Reid (1995)] k = −16→16
Tmin = 0.890, Tmax = 0.993 l = −36→33
3313 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142 H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.049P)2 + 2.1399P] where P = (Fo2 + 2Fc2)/3
3313 reflections (Δ/σ)max < 0.001
169 parameters Δρmax = 0.31 e Å3
0 restraints Δρmin = −0.39 e Å3

Special details

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived (Clark & Reid, 1995).
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.2326 (2) 0.60328 (17) 0.27192 (7) 0.0465 (5)
C2 0.2647 (2) 0.63298 (17) 0.21979 (7) 0.0452 (5)
C3 0.3261 (2) 0.73485 (18) 0.20695 (7) 0.0502 (5)
H3A 0.3404 0.7896 0.2307 0.060*
C4 0.3664 (3) 0.7558 (2) 0.15888 (8) 0.0589 (6)
H4A 0.4091 0.8245 0.1510 0.071*
C5 0.3444 (3) 0.6770 (2) 0.12247 (8) 0.0606 (6)
C6 0.2797 (3) 0.5762 (2) 0.13527 (8) 0.0639 (7)
H6A 0.2615 0.5226 0.1111 0.077*
C7 0.2413 (3) 0.55318 (19) 0.18318 (8) 0.0566 (6)
H7A 0.1998 0.4842 0.1910 0.068*
C8 0.3887 (4) 0.7009 (3) 0.07011 (9) 0.0856 (10)
H8C 0.423 (2) 0.6369 (10) 0.0554 (3) 0.103* 0.50
H8B 0.476 (2) 0.7518 (13) 0.07042 (9) 0.103* 0.50
H8A 0.2934 (16) 0.7286 (15) 0.0525 (3) 0.103* 0.50
H8F 0.424 (2) 0.6373 (10) 0.0552 (3) 0.103* 0.50
H8E 0.476 (2) 0.7517 (13) 0.07049 (9) 0.103* 0.50
H8D 0.2940 (16) 0.7288 (15) 0.0523 (3) 0.103* 0.50
C9 0.1532 (2) 0.68527 (16) 0.35142 (7) 0.0427 (5)
C10 0.1959 (3) 0.59716 (19) 0.38225 (7) 0.0528 (5)
H10A 0.2417 0.5330 0.3699 0.063*
C11 0.1685 (3) 0.6074 (2) 0.43183 (8) 0.0582 (6)
C12 0.1025 (3) 0.6999 (2) 0.45181 (8) 0.0623 (6)
H12A 0.0851 0.7040 0.4854 0.075*
C13 0.0623 (3) 0.7868 (2) 0.42085 (8) 0.0634 (6)
H13A 0.0179 0.8509 0.4337 0.076*
C14 0.0871 (3) 0.78007 (18) 0.37099 (8) 0.0532 (5)
H14A 0.0592 0.8395 0.3505 0.064*
N1 0.1767 (2) 0.68533 (15) 0.30024 (6) 0.0446 (4)
H1N 0.142 (3) 0.7439 (19) 0.2852 (8) 0.051 (6)*
O1 0.2586 (2) 0.50930 (12) 0.28769 (6) 0.0653 (5)
O2 0.5000 0.37191 (16) 0.2500 0.0465 (5)
H2O 0.573 (3) 0.412 (2) 0.2370 (9) 0.077 (8)*
Cl1 0.22644 (12) 0.49860 (7) 0.47115 (3) 0.0998 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0489 (11) 0.0454 (12) 0.0457 (11) 0.0082 (9) 0.0073 (9) −0.0017 (9)
C2 0.0453 (11) 0.0496 (12) 0.0410 (11) 0.0132 (9) 0.0041 (8) 0.0001 (9)
C3 0.0487 (11) 0.0564 (13) 0.0457 (12) 0.0040 (10) 0.0052 (9) −0.0042 (10)
C4 0.0569 (13) 0.0665 (15) 0.0544 (14) 0.0037 (11) 0.0113 (10) 0.0077 (11)
C5 0.0581 (13) 0.0809 (18) 0.0433 (12) 0.0259 (12) 0.0080 (10) 0.0040 (12)
C6 0.0819 (16) 0.0681 (17) 0.0413 (12) 0.0271 (13) 0.0003 (11) −0.0106 (11)
C7 0.0728 (14) 0.0489 (13) 0.0480 (12) 0.0141 (11) 0.0024 (10) −0.0052 (10)
C8 0.0910 (19) 0.119 (3) 0.0488 (14) 0.0294 (18) 0.0182 (13) 0.0114 (15)
C9 0.0407 (10) 0.0486 (12) 0.0393 (10) −0.0001 (9) 0.0055 (8) −0.0030 (9)
C10 0.0592 (13) 0.0557 (13) 0.0443 (12) 0.0075 (10) 0.0083 (9) −0.0005 (10)
C11 0.0606 (13) 0.0699 (16) 0.0444 (12) 0.0025 (11) 0.0071 (10) 0.0079 (11)
C12 0.0630 (14) 0.0837 (18) 0.0413 (12) −0.0007 (12) 0.0118 (10) −0.0086 (12)
C13 0.0734 (15) 0.0627 (15) 0.0552 (14) 0.0057 (12) 0.0145 (11) −0.0164 (12)
C14 0.0607 (13) 0.0501 (13) 0.0494 (12) 0.0046 (10) 0.0080 (10) −0.0047 (10)
N1 0.0525 (10) 0.0426 (10) 0.0391 (9) 0.0097 (8) 0.0062 (7) 0.0009 (8)
O1 0.0982 (12) 0.0471 (9) 0.0530 (9) 0.0223 (8) 0.0233 (8) 0.0052 (7)
O2 0.0543 (12) 0.0347 (11) 0.0513 (12) 0.000 0.0100 (10) 0.000
Cl1 0.1414 (7) 0.1010 (6) 0.0589 (4) 0.0332 (5) 0.0211 (4) 0.0276 (4)

Geometric parameters (Å, °)

C1—O1 1.233 (2) C8—H8F 0.9223
C1—N1 1.349 (2) C8—H8E 0.9222
C1—C2 1.495 (3) C8—H8D 0.9223
C2—C3 1.382 (3) C9—C14 1.383 (3)
C2—C7 1.393 (3) C9—C10 1.388 (3)
C3—C4 1.384 (3) C9—N1 1.411 (2)
C3—H3A 0.9300 C10—C11 1.380 (3)
C4—C5 1.379 (3) C10—H10A 0.9300
C4—H4A 0.9300 C11—C12 1.365 (3)
C5—C6 1.380 (4) C11—Cl1 1.742 (2)
C5—C8 1.511 (3) C12—C13 1.374 (3)
C6—C7 1.380 (3) C12—H12A 0.9300
C6—H6A 0.9300 C13—C14 1.380 (3)
C7—H7A 0.9300 C13—H13A 0.9300
C8—H8C 0.9223 C14—H14A 0.9300
C8—H8B 0.9223 N1—H1N 0.86 (2)
C8—H8A 0.9223 O2—H2O 0.84 (2)
O1—C1—N1 122.76 (19) C5—C8—H8E 109.4
O1—C1—C2 121.22 (18) H8C—C8—H8E 109.4
N1—C1—C2 116.01 (18) H8A—C8—H8E 109.6
C3—C2—C7 118.55 (19) H8F—C8—H8E 109.1
C3—C2—C1 122.43 (18) C5—C8—H8D 109.9
C7—C2—C1 118.9 (2) H8C—C8—H8D 109.4
C2—C3—C4 120.4 (2) H8B—C8—H8D 109.1
C2—C3—H3A 119.8 H8F—C8—H8D 109.2
C4—C3—H3A 119.8 H8E—C8—H8D 109.2
C5—C4—C3 121.4 (2) C14—C9—C10 119.64 (18)
C5—C4—H4A 119.3 C14—C9—N1 116.84 (18)
C3—C4—H4A 119.3 C10—C9—N1 123.51 (18)
C4—C5—C6 118.0 (2) C11—C10—C9 118.1 (2)
C4—C5—C8 120.9 (3) C11—C10—H10A 120.9
C6—C5—C8 121.1 (2) C9—C10—H10A 120.9
C5—C6—C7 121.4 (2) C12—C11—C10 123.1 (2)
C5—C6—H6A 119.3 C12—C11—Cl1 118.31 (17)
C7—C6—H6A 119.3 C10—C11—Cl1 118.56 (19)
C6—C7—C2 120.2 (2) C11—C12—C13 118.0 (2)
C6—C7—H7A 119.9 C11—C12—H12A 121.0
C2—C7—H7A 119.9 C13—C12—H12A 121.0
C5—C8—H8C 109.5 C12—C13—C14 120.8 (2)
C5—C8—H8B 109.5 C12—C13—H13A 119.6
H8C—C8—H8B 109.5 C14—C13—H13A 119.6
C5—C8—H8A 109.5 C13—C14—C9 120.2 (2)
H8C—C8—H8A 109.5 C13—C14—H14A 119.9
H8B—C8—H8A 109.5 C9—C14—H14A 119.9
C5—C8—H8F 110.0 C1—N1—C9 128.76 (18)
H8B—C8—H8F 109.2 C1—N1—H1N 116.7 (14)
H8A—C8—H8F 109.3 C9—N1—H1N 114.3 (14)
O1—C1—C2—C3 −144.7 (2) C14—C9—C10—C11 0.7 (3)
N1—C1—C2—C3 34.3 (3) N1—C9—C10—C11 179.3 (2)
O1—C1—C2—C7 31.5 (3) C9—C10—C11—C12 −0.3 (3)
N1—C1—C2—C7 −149.48 (19) C9—C10—C11—Cl1 −178.47 (16)
C7—C2—C3—C4 −1.2 (3) C10—C11—C12—C13 −0.3 (4)
C1—C2—C3—C4 174.99 (18) Cl1—C11—C12—C13 177.90 (18)
C2—C3—C4—C5 0.9 (3) C11—C12—C13—C14 0.5 (4)
C3—C4—C5—C6 0.4 (3) C12—C13—C14—C9 −0.1 (3)
C3—C4—C5—C8 179.9 (2) C10—C9—C14—C13 −0.5 (3)
C4—C5—C6—C7 −1.5 (3) N1—C9—C14—C13 −179.24 (19)
C8—C5—C6—C7 179.0 (2) O1—C1—N1—C9 6.4 (3)
C5—C6—C7—C2 1.2 (3) C2—C1—N1—C9 −172.65 (18)
C3—C2—C7—C6 0.2 (3) C14—C9—N1—C1 −177.4 (2)
C1—C2—C7—C6 −176.16 (19) C10—C9—N1—C1 3.9 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O2i 0.86 (2) 2.11 (2) 2.947 (2) 167 (2)
O2—H2O···O1ii 0.84 (2) 1.92 (2) 2.7630 (19) 176 (3)

Symmetry codes: (i) x−1/2, y+1/2, z; (ii) −x+1, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2309).

References

  1. Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
  2. Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1–o3. [DOI] [PubMed]
  3. Brandenburg, K. (2002). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.
  5. Gowda, B. T., Bhat, D. K., Fuess, H. & Weiss, A. (1999). Z. Naturforsch. Teil A, 54, 679–684.
  6. Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2570.
  7. Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.
  8. Gowda, B. T. & Shetty, M. (2004). J. Phys. Org. Chem. 17, 848–864.
  9. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  10. Rodrigues, V. Z., Herich, P., Gowda, B. T. & Kožíšek, J. (2011). Acta Cryst. E67, o2767. [DOI] [PMC free article] [PubMed]
  11. Saeed, A., Arshad, M. & Simpson, J. (2010). Acta Cryst. E66, o2808–o2809. [DOI] [PMC free article] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Shetty, M. & Gowda, B. T. (2005). Z. Naturforsch. Teil A, 60, 113–120.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811040992/bq2309sup1.cif

e-67-o2899-sup1.cif (17.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811040992/bq2309Isup2.hkl

e-67-o2899-Isup2.hkl (162.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811040992/bq2309Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES