Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 12;67(Pt 11):o2906. doi: 10.1107/S1600536811041018

1-(1-Adamantylmeth­yl)-1H-benzimidazole

Jarmila Černochová a, Marek Nečas b, Ivo Kuřitka c, Robert Vícha a,*
PMCID: PMC3247322  PMID: 22219940

Abstract

The asymmetric unit of the title compound, C18H22N2, contains two independent mol­ecules which differ slightly with respect to the torsion angles involving the atoms joining the adamantyl and benzimidazole groups. The bond angles in the adamantane cage vary within the range 108.27 (9)–110.55 (10)°. The benzimidazole ring system in both mol­ecules is essentially planar, the maximum deviations from the best planes being 0.0134 (15) and 0.0229 (14) Å. In the crystal, weak C—H⋯π inter­actions link the molecules.

Related literature

For the synthesis, spectroscopic characterization and biological activity of the title compound, see: Hille et al. (2011). For background to C(sp 2)—H⋯π inter­actions, see: Takahashi et al. (2010). For two polymorphs of a related structure, see: Lei & Zhou (2009); Zhang et al. (2010).graphic file with name e-67-o2906-scheme1.jpg

Experimental

Crystal data

  • C18H22N2

  • M r = 266.38

  • Monoclinic, Inline graphic

  • a = 22.0249 (9) Å

  • b = 6.4628 (1) Å

  • c = 22.2739 (8) Å

  • β = 118.694 (5)°

  • V = 2781.2 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 120 K

  • 0.30 × 0.20 × 0.20 mm

Data collection

  • Oxford Diffraction Xcalibur Sapphire2 diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) T min = 0.928, T max = 1.000

  • 32353 measured reflections

  • 4899 independent reflections

  • 3314 reflections with I > 2σ(I)

  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030

  • wR(F 2) = 0.064

  • S = 0.83

  • 4899 reflections

  • 361 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811041018/lh5341sup1.cif

e-67-o2906-sup1.cif (25.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811041018/lh5341Isup2.hkl

e-67-o2906-Isup2.hkl (240KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811041018/lh5341Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C2–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Cg1i 0.95 3.07 3.9197 (16) 150

Symmetry code: (i) Inline graphic.

Acknowledgments

The financial support of this work by the Czech Ministry of Education (project No. MSM 7088352101), the Inter­nal Funding Agency of Tomas Bata University in Zlin, project No. IGA/6/FT/11/D and the Operational Program Research and Development for Innovations co-funded by the European Regional Development Fund (ERDF) and the national budget of the Czech Republic, within the framework of project Centre of Polymer Systems (reg. number: CZ.1.05/2.1.00/03.0111) is gratefully acknowledged.

supplementary crystallographic information

Comment

Title compound has been prepared as a suitable building block for benzimidazolium-based carbene ligands synthesis and recently, the biological activity related to treatment of cortisole-dependent diseases has been studied (Hille et al., 2011). Two polymorphs of a related structure have already been published (Lei & Zhou, 2009; Zhang et al., 2010).

Both crystallographically independent molecules in the asymmetric unit (Fig. 1) contain essentially planar 1H-benzo[d]imidazole heterocycle with a maximum deviations from the best plane being 0.0134 (15) Å for C2 and 0.0229 (14) Å for C21, respectively. The torsion angles C7—N1—C8—C9 and N1—C8—C9—C16 describing the mutual orientation of benzimidazole and adamantane groups are 95.31 (15)° and -179.38 (10)°, respectively. The corresponding angles in the other molecule are -92.89 (15)° and -177.52 (10)°, respectively. The crystal packing is stabilized via weak C—H···π interactions (Fig. 2, Table 1).

Experimental

Benzimidazole (0.40 g, 3.39 mmol) was dissolved in 40 cm3 of dry DMF and sodium hydride (0.2 g, 8.46 mmol) was added portionwise at room temperature. Into this mixture, 1-adamantylbromomethane (1.16 g, 5.09 mmol) was added and the mixture was stirred under argon for 5 days at 373 K. The reaction mixture was poured onto 100 g of crushed ice, extracted with 4 × 25 cm3 of dichloromethane and the collected organic portions were washed several times with distilled water, brine and dried over Na2SO4. The solvent was distilled off under reduced pressure and residual DMF was removed via azeotropic distillation with trichloromethane. The crude material was purified by crystallization (petroleum ether:ethyl acetate, 1:1, v:v) to yield 850 mg (94%) of colorless powder with mp=483–488 K. The crystal used for data collection was grown by spontaneous evaporation of a trichloromethane:methanol solution of the title compound at room temperature.

Refinement

All carbon bound H atoms were placed at calculated positions and were refined as riding with their Uiso set to 1.2Ueq of the respective carrier atoms.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit with 50% probability ellipsoids for non hydrogen atoms. H-atoms are shown as spheres at arbitrary radii.

Fig. 2.

Fig. 2.

Two pairs of molecules linked via weak C—H···π interactions (dotted lines) are colored by symmetry equivalence. H-atoms are omitted except for those participating in H-bonds. Cg1 is centre of gravity of C2–C7, Symmetry codes: (i) x + 1/2, -y + 1/2, z + 1/2; (ii) x - 1/2, -y + 1/2, y - 1/2.

Crystal data

C18H22N2 F(000) = 1152
Mr = 266.38 Dx = 1.272 Mg m3
Monoclinic, P21/n Melting point: 486 K
Hall symbol: -P 2yn Mo Kα radiation, λ = 0.71073 Å
a = 22.0249 (9) Å Cell parameters from 9351 reflections
b = 6.4628 (1) Å θ = 2.8–27.3°
c = 22.2739 (8) Å µ = 0.08 mm1
β = 118.694 (5)° T = 120 K
V = 2781.2 (2) Å3 Block, colourless
Z = 8 0.30 × 0.20 × 0.20 mm

Data collection

Oxford Diffraction Xcalibur Sapphire2 diffractometer 4899 independent reflections
Radiation source: fine-focus sealed tube 3314 reflections with I > 2σ(I)
graphite Rint = 0.034
Detector resolution: 8.4353 pixels mm-1 θmax = 25.0°, θmin = 3.2°
ω scans h = −26→17
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) k = −7→7
Tmin = 0.928, Tmax = 1.000 l = −26→26
32353 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064 H-atom parameters constrained
S = 0.83 w = 1/[σ2(Fo2) + (0.0354P)2] where P = (Fo2 + 2Fc2)/3
4899 reflections (Δ/σ)max < 0.001
361 parameters Δρmax = 0.15 e Å3
0 restraints Δρmin = −0.16 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.58857 (5) 0.07364 (14) 0.28113 (5) 0.0206 (2)
N2 0.55730 (5) 0.39787 (15) 0.24104 (5) 0.0258 (3)
C1 0.58788 (6) 0.27873 (18) 0.29503 (6) 0.0238 (3)
H1 0.6080 0.3312 0.3404 0.029*
C2 0.53553 (6) 0.26067 (18) 0.18631 (6) 0.0212 (3)
C3 0.49849 (6) 0.2979 (2) 0.11594 (6) 0.0272 (3)
H3 0.4847 0.4340 0.0986 0.033*
C4 0.48257 (7) 0.1313 (2) 0.07262 (6) 0.0297 (3)
H4 0.4574 0.1531 0.0246 0.036*
C5 0.50261 (6) −0.0698 (2) 0.09772 (6) 0.0290 (3)
H5 0.4909 −0.1811 0.0662 0.035*
C6 0.53897 (6) −0.11098 (19) 0.16698 (6) 0.0249 (3)
H6 0.5526 −0.2474 0.1840 0.030*
C7 0.55451 (6) 0.05820 (18) 0.21038 (6) 0.0201 (3)
C8 0.62286 (6) −0.09207 (18) 0.33114 (6) 0.0221 (3)
H8A 0.6009 −0.2255 0.3100 0.026*
H8B 0.6150 −0.0687 0.3708 0.026*
C9 0.70077 (6) −0.10925 (17) 0.35702 (5) 0.0170 (3)
C10 0.73908 (6) 0.08829 (17) 0.39375 (6) 0.0204 (3)
H10A 0.7223 0.2061 0.3614 0.025*
H10B 0.7293 0.1191 0.4318 0.025*
C11 0.81690 (6) 0.06242 (18) 0.42177 (6) 0.0227 (3)
H11 0.8412 0.1921 0.4458 0.027*
C12 0.83131 (7) 0.01928 (18) 0.36233 (6) 0.0248 (3)
H12A 0.8817 0.0039 0.3798 0.030*
H12B 0.8148 0.1368 0.3298 0.030*
C13 0.79412 (6) −0.17918 (18) 0.32558 (6) 0.0222 (3)
H13 0.8035 −0.2068 0.2866 0.027*
C14 0.82057 (7) −0.36073 (18) 0.37585 (6) 0.0255 (3)
H14A 0.8709 −0.3786 0.3934 0.031*
H14B 0.7970 −0.4899 0.3522 0.031*
C15 0.80601 (7) −0.31763 (18) 0.43533 (6) 0.0239 (3)
H15 0.8231 −0.4360 0.4683 0.029*
C16 0.72824 (7) −0.29034 (18) 0.40795 (6) 0.0229 (3)
H16A 0.7189 −0.2635 0.4465 0.027*
H16B 0.7039 −0.4192 0.3849 0.027*
C17 0.71637 (6) −0.15487 (18) 0.29825 (6) 0.0210 (3)
H17A 0.6924 −0.2835 0.2746 0.025*
H17B 0.6988 −0.0403 0.2647 0.025*
C18 0.84322 (7) −0.11922 (18) 0.47179 (6) 0.0276 (3)
H18A 0.8347 −0.0918 0.5108 0.033*
H18B 0.8937 −0.1356 0.4899 0.033*
N21 0.81236 (5) 0.11037 (14) 0.61146 (5) 0.0206 (2)
N22 0.77666 (6) 0.43222 (15) 0.57082 (5) 0.0266 (3)
C21 0.82934 (7) 0.31252 (19) 0.60867 (6) 0.0247 (3)
H21 0.8756 0.3621 0.6323 0.030*
C22 0.71997 (7) 0.29919 (18) 0.54557 (6) 0.0221 (3)
C23 0.65052 (7) 0.3378 (2) 0.50043 (6) 0.0276 (3)
H23 0.6351 0.4728 0.4828 0.033*
C24 0.60493 (7) 0.1751 (2) 0.48206 (6) 0.0297 (3)
H24 0.5572 0.1988 0.4516 0.036*
C25 0.62717 (7) −0.0254 (2) 0.50718 (6) 0.0279 (3)
H25 0.5942 −0.1344 0.4931 0.033*
C26 0.69569 (7) −0.06793 (19) 0.55175 (6) 0.0231 (3)
H26 0.7109 −0.2035 0.5689 0.028*
C27 0.74142 (7) 0.09792 (18) 0.57037 (6) 0.0202 (3)
C28 0.86030 (6) −0.05658 (18) 0.65027 (6) 0.0211 (3)
H28A 0.9047 −0.0329 0.6503 0.025*
H28B 0.8411 −0.1891 0.6264 0.025*
C29 0.87474 (6) −0.07727 (17) 0.72453 (6) 0.0170 (3)
C30 0.90524 (6) 0.12265 (17) 0.76505 (6) 0.0196 (3)
H30A 0.9475 0.1611 0.7625 0.023*
H30B 0.8713 0.2365 0.7447 0.023*
C31 0.92319 (6) 0.09273 (18) 0.83991 (6) 0.0214 (3)
H31 0.9433 0.2237 0.8658 0.026*
C32 0.97601 (6) −0.08287 (18) 0.87178 (6) 0.0252 (3)
H32A 1.0189 −0.0479 0.8700 0.030*
H32B 0.9879 −0.1014 0.9203 0.030*
C33 0.94509 (7) −0.28301 (18) 0.83216 (6) 0.0227 (3)
H33 0.9794 −0.3980 0.8528 0.027*
C34 0.87901 (7) −0.33678 (18) 0.83533 (6) 0.0254 (3)
H34A 0.8592 −0.4672 0.8102 0.031*
H34B 0.8900 −0.3571 0.8835 0.031*
C35 0.82659 (6) −0.16154 (18) 0.80349 (6) 0.0223 (3)
H35 0.7834 −0.1967 0.8056 0.027*
C36 0.80937 (6) −0.13371 (18) 0.72869 (6) 0.0208 (3)
H36A 0.7895 −0.2636 0.7032 0.025*
H36B 0.7744 −0.0228 0.7074 0.025*
C37 0.92803 (6) −0.25205 (17) 0.75754 (6) 0.0210 (3)
H37A 0.9092 −0.3821 0.7317 0.025*
H37B 0.9708 −0.2171 0.7556 0.025*
C38 0.85747 (7) 0.03925 (18) 0.84316 (6) 0.0239 (3)
H38A 0.8235 0.1531 0.8230 0.029*
H38B 0.8683 0.0217 0.8915 0.029*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0174 (6) 0.0193 (6) 0.0220 (5) 0.0012 (5) 0.0070 (5) 0.0012 (4)
N2 0.0240 (7) 0.0219 (6) 0.0326 (6) 0.0042 (5) 0.0145 (5) 0.0022 (5)
C1 0.0203 (8) 0.0231 (7) 0.0282 (7) 0.0005 (6) 0.0118 (6) −0.0036 (6)
C2 0.0135 (8) 0.0227 (7) 0.0282 (7) 0.0014 (6) 0.0104 (6) 0.0035 (5)
C3 0.0192 (8) 0.0300 (7) 0.0336 (7) 0.0041 (6) 0.0136 (6) 0.0109 (6)
C4 0.0196 (8) 0.0416 (9) 0.0237 (7) −0.0017 (7) 0.0070 (6) 0.0063 (6)
C5 0.0239 (9) 0.0330 (8) 0.0249 (7) −0.0076 (7) 0.0077 (6) −0.0033 (6)
C6 0.0218 (8) 0.0231 (7) 0.0263 (7) −0.0038 (6) 0.0087 (6) 0.0005 (6)
C7 0.0124 (8) 0.0242 (7) 0.0221 (7) −0.0016 (6) 0.0071 (6) 0.0025 (5)
C8 0.0247 (8) 0.0200 (7) 0.0218 (7) −0.0003 (6) 0.0113 (6) 0.0023 (5)
C9 0.0177 (8) 0.0164 (6) 0.0163 (6) 0.0014 (5) 0.0076 (6) 0.0010 (5)
C10 0.0235 (8) 0.0178 (6) 0.0190 (6) 0.0025 (6) 0.0094 (6) −0.0011 (5)
C11 0.0193 (8) 0.0190 (7) 0.0244 (7) −0.0009 (6) 0.0063 (6) −0.0052 (5)
C12 0.0216 (8) 0.0223 (7) 0.0315 (7) 0.0026 (6) 0.0134 (7) 0.0043 (6)
C13 0.0258 (9) 0.0226 (7) 0.0232 (6) 0.0017 (6) 0.0156 (6) −0.0014 (5)
C14 0.0254 (8) 0.0194 (7) 0.0329 (7) 0.0030 (6) 0.0149 (7) −0.0008 (6)
C15 0.0253 (9) 0.0221 (7) 0.0221 (7) 0.0077 (6) 0.0097 (6) 0.0075 (5)
C16 0.0303 (9) 0.0203 (7) 0.0207 (6) 0.0020 (6) 0.0143 (6) 0.0025 (5)
C17 0.0262 (8) 0.0186 (6) 0.0171 (6) −0.0011 (6) 0.0095 (6) −0.0013 (5)
C18 0.0235 (8) 0.0330 (8) 0.0199 (7) 0.0052 (6) 0.0053 (6) −0.0007 (6)
N21 0.0234 (7) 0.0184 (6) 0.0190 (5) 0.0037 (5) 0.0094 (5) 0.0028 (4)
N22 0.0324 (7) 0.0223 (6) 0.0233 (6) 0.0043 (6) 0.0119 (5) 0.0039 (5)
C21 0.0309 (9) 0.0223 (7) 0.0222 (7) −0.0010 (6) 0.0138 (6) 0.0012 (6)
C22 0.0292 (9) 0.0221 (7) 0.0160 (6) 0.0058 (6) 0.0116 (6) 0.0011 (5)
C23 0.0354 (9) 0.0260 (7) 0.0185 (7) 0.0111 (7) 0.0108 (7) 0.0020 (6)
C24 0.0256 (9) 0.0367 (8) 0.0196 (7) 0.0097 (7) 0.0051 (6) −0.0019 (6)
C25 0.0279 (9) 0.0321 (8) 0.0200 (7) −0.0007 (7) 0.0085 (7) −0.0054 (6)
C26 0.0280 (9) 0.0216 (7) 0.0176 (6) 0.0041 (6) 0.0093 (6) −0.0005 (5)
C27 0.0224 (8) 0.0246 (7) 0.0131 (6) 0.0036 (6) 0.0083 (6) −0.0016 (5)
C28 0.0205 (8) 0.0196 (6) 0.0229 (7) 0.0045 (6) 0.0102 (6) 0.0017 (5)
C29 0.0155 (7) 0.0163 (6) 0.0196 (6) 0.0009 (5) 0.0087 (6) 0.0015 (5)
C30 0.0160 (8) 0.0179 (6) 0.0258 (7) 0.0003 (5) 0.0108 (6) 0.0018 (5)
C31 0.0214 (8) 0.0181 (6) 0.0210 (6) −0.0016 (6) 0.0074 (6) −0.0019 (5)
C32 0.0221 (8) 0.0274 (7) 0.0221 (7) 0.0012 (6) 0.0073 (6) 0.0026 (6)
C33 0.0224 (8) 0.0193 (6) 0.0230 (7) 0.0060 (6) 0.0084 (6) 0.0053 (5)
C34 0.0348 (9) 0.0197 (7) 0.0235 (7) −0.0012 (6) 0.0154 (6) 0.0027 (5)
C35 0.0206 (8) 0.0233 (7) 0.0264 (7) −0.0019 (6) 0.0140 (6) 0.0014 (5)
C36 0.0183 (8) 0.0193 (6) 0.0238 (6) −0.0002 (6) 0.0094 (6) −0.0006 (5)
C37 0.0199 (8) 0.0184 (6) 0.0256 (7) 0.0014 (6) 0.0117 (6) 0.0003 (5)
C38 0.0284 (9) 0.0237 (7) 0.0220 (7) 0.0033 (6) 0.0141 (6) 0.0019 (5)

Geometric parameters (Å, °)

N1—C1 1.3629 (14) N21—C21 1.3685 (14)
N1—C7 1.3860 (14) N21—C27 1.3829 (15)
N1—C8 1.4664 (13) N21—C28 1.4661 (14)
N2—C1 1.3096 (14) N22—C21 1.3100 (15)
N2—C2 1.3931 (15) N22—C22 1.3929 (15)
C1—H1 0.9500 C21—H21 0.9500
C2—C3 1.3972 (16) C22—C23 1.3915 (17)
C2—C7 1.3997 (16) C22—C27 1.4035 (16)
C3—C4 1.3744 (17) C23—C24 1.3738 (18)
C3—H3 0.9500 C23—H23 0.9500
C4—C5 1.4000 (17) C24—C25 1.4029 (17)
C4—H4 0.9500 C24—H24 0.9500
C5—C6 1.3805 (16) C25—C26 1.3784 (17)
C5—H5 0.9500 C25—H25 0.9500
C6—C7 1.3889 (16) C26—C27 1.3908 (16)
C6—H6 0.9500 C26—H26 0.9500
C8—C9 1.5294 (16) C28—C29 1.5329 (15)
C8—H8A 0.9900 C28—H28A 0.9900
C8—H8B 0.9900 C28—H28B 0.9900
C9—C10 1.5324 (15) C29—C36 1.5306 (16)
C9—C17 1.5331 (15) C29—C30 1.5340 (15)
C9—C16 1.5374 (15) C29—C37 1.5380 (15)
C10—C11 1.5257 (16) C30—C31 1.5299 (15)
C10—H10A 0.9900 C30—H30A 0.9900
C10—H10B 0.9900 C30—H30B 0.9900
C11—C12 1.5280 (16) C31—C38 1.5234 (17)
C11—C18 1.5281 (16) C31—C32 1.5337 (15)
C11—H11 1.0000 C31—H31 1.0000
C12—C13 1.5304 (16) C32—C33 1.5292 (16)
C12—H12A 0.9900 C32—H32A 0.9900
C12—H12B 0.9900 C32—H32B 0.9900
C13—C17 1.5253 (16) C33—C34 1.5305 (17)
C13—C14 1.5308 (16) C33—C37 1.5310 (15)
C13—H13 1.0000 C33—H33 1.0000
C14—C15 1.5308 (16) C34—C35 1.5273 (16)
C14—H14A 0.9900 C34—H34A 0.9900
C14—H14B 0.9900 C34—H34B 0.9900
C15—C16 1.5277 (16) C35—C36 1.5314 (16)
C15—C18 1.5285 (16) C35—C38 1.5331 (16)
C15—H15 1.0000 C35—H35 1.0000
C16—H16A 0.9900 C36—H36A 0.9900
C16—H16B 0.9900 C36—H36B 0.9900
C17—H17A 0.9900 C37—H37A 0.9900
C17—H17B 0.9900 C37—H37B 0.9900
C18—H18A 0.9900 C38—H38A 0.9900
C18—H18B 0.9900 C38—H38B 0.9900
C1—N1—C7 105.63 (10) C21—N21—C27 105.78 (10)
C1—N1—C8 126.55 (10) C21—N21—C28 126.46 (11)
C7—N1—C8 127.68 (10) C27—N21—C28 127.76 (10)
C1—N2—C2 103.80 (10) C21—N22—C22 103.92 (10)
N2—C1—N1 114.83 (11) N22—C21—N21 114.59 (12)
N2—C1—H1 122.6 N22—C21—H21 122.7
N1—C1—H1 122.6 N21—C21—H21 122.7
N2—C2—C3 129.95 (11) C23—C22—N22 129.96 (11)
N2—C2—C7 110.23 (10) C23—C22—C27 119.75 (12)
C3—C2—C7 119.79 (11) N22—C22—C27 110.24 (11)
C4—C3—C2 117.86 (12) C24—C23—C22 118.07 (12)
C4—C3—H3 121.1 C24—C23—H23 121.0
C2—C3—H3 121.1 C22—C23—H23 121.0
C3—C4—C5 121.46 (12) C23—C24—C25 121.53 (12)
C3—C4—H4 119.3 C23—C24—H24 119.2
C5—C4—H4 119.3 C25—C24—H24 119.2
C6—C5—C4 121.84 (12) C26—C25—C24 121.56 (13)
C6—C5—H5 119.1 C26—C25—H25 119.2
C4—C5—H5 119.1 C24—C25—H25 119.2
C5—C6—C7 116.30 (12) C25—C26—C27 116.53 (12)
C5—C6—H6 121.9 C25—C26—H26 121.7
C7—C6—H6 121.9 C27—C26—H26 121.7
N1—C7—C6 131.75 (11) N21—C27—C26 131.96 (11)
N1—C7—C2 105.50 (10) N21—C27—C22 105.45 (11)
C6—C7—C2 122.74 (11) C26—C27—C22 122.55 (12)
N1—C8—C9 114.51 (9) N21—C28—C29 114.71 (9)
N1—C8—H8A 108.6 N21—C28—H28A 108.6
C9—C8—H8A 108.6 C29—C28—H28A 108.6
N1—C8—H8B 108.6 N21—C28—H28B 108.6
C9—C8—H8B 108.6 C29—C28—H28B 108.6
H8A—C8—H8B 107.6 H28A—C28—H28B 107.6
C8—C9—C10 111.79 (9) C36—C29—C28 111.85 (9)
C8—C9—C17 111.28 (9) C36—C29—C30 108.90 (9)
C10—C9—C17 108.93 (9) C28—C29—C30 111.52 (9)
C8—C9—C16 107.83 (9) C36—C29—C37 108.67 (9)
C10—C9—C16 108.64 (9) C28—C29—C37 107.17 (9)
C17—C9—C16 108.27 (9) C30—C29—C37 108.62 (9)
C11—C10—C9 110.46 (9) C31—C30—C29 110.23 (9)
C11—C10—H10A 109.6 C31—C30—H30A 109.6
C9—C10—H10A 109.6 C29—C30—H30A 109.6
C11—C10—H10B 109.6 C31—C30—H30B 109.6
C9—C10—H10B 109.6 C29—C30—H30B 109.6
H10A—C10—H10B 108.1 H30A—C30—H30B 108.1
C10—C11—C12 108.99 (10) C38—C31—C30 109.04 (9)
C10—C11—C18 109.93 (10) C38—C31—C32 109.70 (10)
C12—C11—C18 109.12 (10) C30—C31—C32 109.85 (10)
C10—C11—H11 109.6 C38—C31—H31 109.4
C12—C11—H11 109.6 C30—C31—H31 109.4
C18—C11—H11 109.6 C32—C31—H31 109.4
C11—C12—C13 109.63 (10) C33—C32—C31 109.28 (10)
C11—C12—H12A 109.7 C33—C32—H32A 109.8
C13—C12—H12A 109.7 C31—C32—H32A 109.8
C11—C12—H12B 109.7 C33—C32—H32B 109.8
C13—C12—H12B 109.7 C31—C32—H32B 109.8
H12A—C12—H12B 108.2 H32A—C32—H32B 108.3
C17—C13—C12 109.70 (10) C32—C33—C34 109.59 (10)
C17—C13—C14 109.32 (10) C32—C33—C37 108.97 (9)
C12—C13—C14 109.46 (10) C34—C33—C37 109.67 (10)
C17—C13—H13 109.4 C32—C33—H33 109.5
C12—C13—H13 109.4 C34—C33—H33 109.5
C14—C13—H13 109.4 C37—C33—H33 109.5
C13—C14—C15 109.23 (10) C35—C34—C33 109.50 (10)
C13—C14—H14A 109.8 C35—C34—H34A 109.8
C15—C14—H14A 109.8 C33—C34—H34A 109.8
C13—C14—H14B 109.8 C35—C34—H34B 109.8
C15—C14—H14B 109.8 C33—C34—H34B 109.8
H14A—C14—H14B 108.3 H34A—C34—H34B 108.2
C16—C15—C18 109.12 (10) C34—C35—C36 109.23 (10)
C16—C15—C14 109.64 (10) C34—C35—C38 109.44 (10)
C18—C15—C14 109.32 (10) C36—C35—C38 109.71 (9)
C16—C15—H15 109.6 C34—C35—H35 109.5
C18—C15—H15 109.6 C36—C35—H35 109.5
C14—C15—H15 109.6 C38—C35—H35 109.5
C15—C16—C9 110.55 (10) C29—C36—C35 110.19 (10)
C15—C16—H16A 109.5 C29—C36—H36A 109.6
C9—C16—H16A 109.5 C35—C36—H36A 109.6
C15—C16—H16B 109.5 C29—C36—H36B 109.6
C9—C16—H16B 109.5 C35—C36—H36B 109.6
H16A—C16—H16B 108.1 H36A—C36—H36B 108.1
C13—C17—C9 110.37 (9) C33—C37—C29 110.37 (9)
C13—C17—H17A 109.6 C33—C37—H37A 109.6
C9—C17—H17A 109.6 C29—C37—H37A 109.6
C13—C17—H17B 109.6 C33—C37—H37B 109.6
C9—C17—H17B 109.6 C29—C37—H37B 109.6
H17A—C17—H17B 108.1 H37A—C37—H37B 108.1
C11—C18—C15 109.76 (10) C31—C38—C35 109.47 (10)
C11—C18—H18A 109.7 C31—C38—H38A 109.8
C15—C18—H18A 109.7 C35—C38—H38A 109.8
C11—C18—H18B 109.7 C31—C38—H38B 109.8
C15—C18—H18B 109.7 C35—C38—H38B 109.8
H18A—C18—H18B 108.2 H38A—C38—H38B 108.2

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C2–C7 ring.
D—H···A D—H H···A D···A D—H···A
C1—H1···Cg1i 0.95 3.07 3.9197 (16) 150.

Symmetry codes: (i) x+1/2, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5341).

References

  1. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  2. Hille, U. E., Zimmer, C., Vock, C. A. & Hartmann, R. W. (2011). Med. Chem. Lett. 2, 2–6. [DOI] [PMC free article] [PubMed]
  3. Lei, G. & Zhou, L. (2009). Acta Cryst. E65, o2613. [DOI] [PMC free article] [PubMed]
  4. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  5. Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, USA.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Takahashi, O., Kohno, Y. & Nishio, M. (2010). Chem. Rev. 110, 6049–6076. [DOI] [PubMed]
  8. Zhang, Y., Zhu, X., Qian, H., Yin, Z. & Zhang, C. (2010). Acta Cryst. E66, o1208. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811041018/lh5341sup1.cif

e-67-o2906-sup1.cif (25.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811041018/lh5341Isup2.hkl

e-67-o2906-Isup2.hkl (240KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811041018/lh5341Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES