Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 12;67(Pt 11):o2911–o2912. doi: 10.1107/S1600536811040906

Dimethyl 4,4′-dihy­droxy-3,3′-{[(3aRS,7aRS)-2,3,3a,4,5,6,7,7a-octa­hydro-1H-1,3-benzimidazole-1,3-di­yl]bis­(methyl­ene)}dibenzoate

Augusto Rivera a,*, Diego Quiroga a, Jaime Ríos-Motta a, Karla Fejfarová b, Michal Dušek b
PMCID: PMC3247326  PMID: 22219944

Abstract

The title compound, C25H30N2O6, has the imidazolidine ring in an envelope conformation. There are two intra­molecular O—H⋯N hydrogen-bond inter­actions with graph-set motif S(6). The cyclo­hexane ring adopts a slightly distorted chair conformation. One methyl carboxyl­ate substituent forms a dihedral angle of 12.00 (5)° with the plane of the benzene ring, while the other methyl carboxyl­ate group is almost coplanar, making a dihedral angle of 2.26 (9)°. In the crystal, pairs of inter­molecular C—H⋯O hydrogen bonds form racemic dimers, corresponding to an R 2 2(18) graph-set motif. Further weak C—H⋯O inter­actions generate a chain running along the c axis.

Related literature

For related structures, see: Rivera et al. (2011a,b,c ). For the synthesis of the precursor, see: Murray-Rust & Riddell (1975). For puckering parameters, see: Cremer & Pople (1975). For hydrogen-bond graph-set nomenclature, see: Bernstein et al. (1995).graphic file with name e-67-o2911-scheme1.jpg

Experimental

Crystal data

  • C25H30N2O6

  • M r = 454.5

  • Monoclinic, Inline graphic

  • a = 26.3472 (6) Å

  • b = 9.1432 (1) Å

  • c = 21.6585 (4) Å

  • β = 121.139 (3)°

  • V = 4465.7 (2) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.80 mm−1

  • T = 120 K

  • 0.41 × 0.23 × 0.16 mm

Data collection

  • Agilent Xcalibur diffractometer with an Atlas (Gemini ultra Cu) detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) T min = 0.853, T max = 1

  • 17421 measured reflections

  • 3970 independent reflections

  • 3309 reflections with I > 3σ(I)

  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.097

  • S = 1.54

  • 3970 reflections

  • 304 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811040906/bt5658sup1.cif

e-67-o2911-sup1.cif (23.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811040906/bt5658Isup2.hkl

e-67-o2911-Isup2.hkl (167.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811040906/bt5658Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯N1 0.90 (2) 1.80 (2) 2.6383 (18) 154.3 (16)
O6—H6⋯N2 0.87 (2) 1.88 (2) 2.6814 (18) 153.0 (18)
C2—H2⋯O1i 0.96 2.57 3.414 (2) 146
C4—H4b⋯O1i 0.96 2.58 3.353 (2) 137
C16—H16c⋯O6ii 0.96 2.59 3.350 (2) 136

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB) de la Universidad Nacional de Colombia, for financial support of this work, as well as the Institutional research plan No. AVOZ10100521 of the Institute of Physics and the Praemium Academiae project of the Academy of Sciences of the Czech Republic. DQ acknowledges the Vicerrectoría Académica de la Universidad Nacional de Colombia for a fellowship.

supplementary crystallographic information

Comment

The synthesis of the title compound (I) represents an expansion of our previous work exploring the substituent effects on the solid state structures of di-Mannich bases (Rivera et al., 2011a,b,c). In the title compound (I), C25H30N2O6, the heterocyclc ring has a envelope conformation on C7 (Q(2) = 0.4439 (15) Å, φ = 296.59 (19)°). It is surprising, however, that of the 12 fused 1,3-disubstituted-(3aR,7aR/3aS,7aS)-2,3,3a,4,5,6,7,7a-octahydro-1H-1,3-benzimidazole of this type studied to date by us, including the title compound, only two has an envelope conformation on aminalic carbon (NCH2N); the other all have a twisted conformation on C—C bond joint to both rings. The molecular conformation is stabilized by two intramolecular O—H···N hydrogen-bond interaction with set graph motif S(6) (Bernstein,et al. 1995). The cyclohexane ring adopt a slightly distorted chair conformation (Cremer & Pople, 1975) with puckering parameters Q, θ and φ of 0.5834 (16) Å, 5.35 (16)°, 300.8 (17)°. In the molecule of the title compound (Fig. 1), bond lengths and angles are generally within normal ranges and comparable with those observed in related compounds (Rivera et al., 2011a,b,c). Whereas the first carbonyl group is coplanar with the phenyl ring [torsion angle C10—C11—C15—O1 of 1.3 (2)°], the second carbonyl group is slightly twisted out of the plane of the aromatic ring. The torsion angle C19—C20—C24—O4 amounts to -10.1 (2)°. Therefore, the differences in orientation likely arise as a result of steric considerations with respect to the crystal packing.

The crystal packing is dominated by non-conventional C—H···O hydrogen bond interactions, Table 1. In the racemic crystal of title compound, a pair of the enantiomers are bonded together with two intermolecular bifurcate hydrogen bonds (Figure 2), generating a R22(18) graph-set motifs (Bernstein,et al. 1995). So, O1 can form two bifurcate intermolecular hydrogen bonds with two hydrogen atoms, C2—H2···O1 [C···O = 3.414 (2) Å] and C4—H4b···O1 [C···O = 3.353 (2) Å], but the two hydrogen atoms are in the same molecule, which indicates that one molecule in the crystals can be connected with one neighboring molecule by two intermolecular C—H···O bifurcate hydrogen bonds. The racemic dimers are further connected by additional C16—H16c···O6 hydrogen bonds, forming a supramolecular chain along the c axis (Figure 3). Thus, the ability of O6—H6 hydroxyl group to act as a hydrogen bridge donor and acceptor is important for the formation of crystals packing of the title compound. However, this additional H-bonding does not influence the intramolecular O—H···N distance, which shows a typical O···N distances of 2.6814 (18) Å (Rivera et al., 2011a,b,c).

Experimental

A solution of methyl 4-hydroxybenzoate (304 mg, 2.00 mmol) in dioxane (3 ml) was added dropwise to (2R,7R,11S,16S)-1,8,10,17- tetraazapentacyclo[8.8.1.18,17.02,7.011,16]icosane (276 mg, 1.00 mmol) in dioxane (3 ml) and water (4 ml), prepared following previously described procedures (Murray-Rust & Riddell, 1975). The mixture was refluxed for about 10 h. The solvent was evaporated under reduced pressure until a sticky residue appeared. The product was purified by chromatography on a silica column, and subjected to gradient elution with benzene:ethyl acetate (yield 20%, m.p. = 449–450 K). Single crystals of racemic (I) were grown from a chloroform: methanol solution by slow evaporation of the solvent at room temperature over a period of about 2 weeks.

1H NMR (CDCl3, 400 MHz): δ 1.30 (4H, m), 1.86 (2H, m), 2.06 (2H, m), 2.38 (2H, m), 3.53 (2H, s, NCH2N), 3.54 (2H, d, 2JH,H = 14.0 Hz, ArCH2N), 4.20 (2H, d, 2JH,H = 14.0 Hz, ArCH2N), 3.84 (6H, s, CH3), 6.83 (2H, d, 3JH,H = 8.4 Hz), 7.68 (2H, s), 7.86 (2H, dd, 4JH,H = 1.6 Hz, 3JH,H = 8.4 Hz). 13C NMR (CDCl3, 100 MHz): δ 23.9, 28.8, 51.8, 56.0, 69.1, 75.6, 116.2, 121.0, 121.3, 130.0, 131.2, 161.9, 166.8.

Refinement

All hydrogen atoms were discernible in difference Fourier maps and could be refined to reasonable geometry. According to common practice H atoms bonded to C atoms were kept in ideal positions with C–H distance 0.96 Å during the refinement. The methyl H atoms were allowed to rotate freely about the adjacent C—C bonds. The hydroxyl H atoms were found in difference Fourier maps and their coordinates were refined freely. All H atoms were refined with displacement coefficients Uiso(H) set to 1.5Ueq(C, O) for methyl and hydroxyl groups and to to 1.2Ueq(C) for the CH– and CH2– groups.

Figures

Fig. 1.

Fig. 1.

A view of (I) with the numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Dimer formation of the title compound by a R22(18) ring motif.

Fig. 3.

Fig. 3.

Packing of the molecules of the title compound view along the c axis.

Crystal data

C25H30N2O6 F(000) = 1936
Mr = 454.5 Dx = 1.352 Mg m3
Monoclinic, C2/c Cu Kα radiation, λ = 1.5418 Å
Hall symbol: -C 2yc Cell parameters from 9151 reflections
a = 26.3472 (6) Å θ = 3.4–67.1°
b = 9.1432 (1) Å µ = 0.80 mm1
c = 21.6585 (4) Å T = 120 K
β = 121.139 (3)° Block, colourless
V = 4465.7 (2) Å3 0.41 × 0.23 × 0.16 mm
Z = 8

Data collection

Agilent Xcalibur diffractometer with an Atlas (Gemini ultra Cu) detector 3970 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source 3309 reflections with I > 3σ(I)
mirror Rint = 0.028
Detector resolution: 10.3784 pixels mm-1 θmax = 67.1°, θmin = 3.9°
Rotation method data acquisition using ω scans h = −31→30
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) k = −10→10
Tmin = 0.853, Tmax = 1 l = −24→25
17421 measured reflections

Refinement

Refinement on F2 0 constraints
R[F2 > 2σ(F2)] = 0.035 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.097 Weighting scheme based on measured s.u.'s w = 1/[σ2(I) + 0.0016I2]
S = 1.54 (Δ/σ)max = 0.045
3970 reflections Δρmax = 0.26 e Å3
304 parameters Δρmin = −0.18 e Å3
0 restraints

Special details

Experimental. CrysAlisPro (Agilent Technologies, 2010) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement.The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.25904 (4) 0.33029 (11) 1.07162 (5) 0.0309 (4)
O2 0.18467 (4) 0.18439 (10) 1.05612 (5) 0.0305 (4)
O3 0.03275 (4) 0.68882 (11) 0.84111 (5) 0.0269 (4)
O4 0.01966 (4) 0.25644 (10) 0.51016 (5) 0.0275 (4)
O5 0.10151 (4) 0.15258 (9) 0.52210 (5) 0.0246 (4)
O6 0.22213 (4) 0.68869 (11) 0.72919 (5) 0.0281 (4)
N1 0.11660 (5) 0.80792 (11) 0.82539 (6) 0.0206 (4)
N2 0.12619 (5) 0.80593 (11) 0.72269 (6) 0.0203 (4)
C1 0.12226 (6) 0.70921 (14) 0.77488 (7) 0.0229 (5)
C2 0.12528 (6) 0.95764 (13) 0.80739 (7) 0.0200 (5)
C3 0.09573 (6) 1.07952 (14) 0.82484 (7) 0.0244 (6)
C4 0.10153 (7) 1.22240 (15) 0.79175 (8) 0.0282 (6)
C5 0.07990 (6) 1.20809 (15) 0.71143 (8) 0.0283 (6)
C6 0.10988 (6) 1.08124 (14) 0.69607 (7) 0.0252 (6)
C7 0.09940 (6) 0.94404 (13) 0.72716 (7) 0.0203 (5)
C8 0.15534 (6) 0.76766 (14) 0.90155 (7) 0.0221 (5)
C9 0.13584 (6) 0.62646 (14) 0.91905 (6) 0.0201 (5)
C10 0.17667 (6) 0.52797 (14) 0.96778 (7) 0.0209 (5)
C11 0.15941 (6) 0.40115 (14) 0.98767 (7) 0.0217 (5)
C12 0.09912 (6) 0.37225 (14) 0.95701 (7) 0.0232 (6)
C13 0.05745 (6) 0.46807 (14) 0.90719 (7) 0.0234 (6)
C14 0.07510 (6) 0.59530 (14) 0.88841 (7) 0.0208 (5)
C15 0.20657 (6) 0.30532 (14) 1.04216 (7) 0.0238 (6)
C16 0.22831 (7) 0.08821 (16) 1.11053 (9) 0.0354 (7)
C17 0.09522 (6) 0.74531 (14) 0.64881 (7) 0.0223 (5)
C18 0.12328 (5) 0.60631 (14) 0.64261 (7) 0.0196 (5)
C19 0.08850 (6) 0.49718 (13) 0.59512 (7) 0.0193 (5)
C20 0.11324 (6) 0.37195 (13) 0.58482 (7) 0.0202 (5)
C21 0.17476 (6) 0.35599 (14) 0.62305 (7) 0.0227 (5)
C22 0.21021 (6) 0.46283 (14) 0.67116 (7) 0.0243 (5)
C23 0.18496 (6) 0.58707 (14) 0.68127 (7) 0.0216 (5)
C24 0.07276 (6) 0.25842 (14) 0.53542 (7) 0.0209 (5)
C25 0.06444 (6) 0.03656 (14) 0.47537 (8) 0.0280 (6)
H1a 0.087447 0.649231 0.749828 0.0275*
H1b 0.158079 0.653125 0.801001 0.0275*
H2 0.166122 0.986613 0.835672 0.024*
H3a 0.114963 1.0903 0.876215 0.0293*
H3b 0.05453 1.05683 0.804644 0.0293*
H4a 0.079681 1.2984 0.798436 0.0338*
H4b 0.142166 1.253728 0.817484 0.0338*
H5a 0.037711 1.194144 0.684606 0.034*
H5b 0.087307 1.297828 0.694408 0.034*
H6a 0.092156 1.070066 0.644902 0.0302*
H6b 0.151703 1.09954 0.719443 0.0302*
H7 0.056997 0.938134 0.697421 0.0244*
H8a 0.155072 0.844511 0.931581 0.0265*
H8b 0.195371 0.757804 0.912249 0.0265*
H10 0.218184 0.547519 0.988554 0.0251*
H12 0.08652 0.285732 0.970499 0.0278*
H13 0.01599 0.44652 0.885411 0.0281*
H16a 0.20887 0.004224 1.115555 0.0531*
H16b 0.255737 0.057284 1.096498 0.0531*
H16c 0.249366 0.139159 1.155739 0.0531*
H17a 0.094472 0.817116 0.616009 0.0268*
H17b 0.054477 0.727007 0.633433 0.0268*
H19 0.046172 0.508256 0.568587 0.0232*
H21 0.192427 0.270804 0.615918 0.0272*
H22 0.25252 0.451248 0.697763 0.0291*
H25a 0.088144 −0.030455 0.466731 0.0421*
H25b 0.046388 −0.014333 0.49793 0.0421*
H25c 0.034108 0.077264 0.430369 0.0421*
H3 0.0529 (8) 0.750 (2) 0.8286 (10) 0.0404*
H6 0.1986 (8) 0.751 (2) 0.7320 (10) 0.0422*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0282 (5) 0.0290 (5) 0.0291 (5) 0.0015 (4) 0.0104 (4) 0.0040 (4)
O2 0.0339 (5) 0.0213 (5) 0.0341 (5) 0.0023 (4) 0.0159 (5) 0.0076 (4)
O3 0.0212 (5) 0.0296 (5) 0.0295 (5) 0.0038 (4) 0.0127 (4) 0.0069 (4)
O4 0.0223 (5) 0.0260 (5) 0.0278 (5) 0.0000 (4) 0.0085 (4) −0.0035 (4)
O5 0.0274 (5) 0.0199 (5) 0.0270 (5) −0.0007 (4) 0.0145 (4) −0.0035 (4)
O6 0.0228 (5) 0.0260 (5) 0.0319 (5) −0.0039 (4) 0.0116 (4) −0.0081 (4)
N1 0.0240 (5) 0.0190 (5) 0.0183 (5) −0.0006 (4) 0.0107 (5) 0.0009 (4)
N2 0.0236 (5) 0.0187 (5) 0.0180 (5) 0.0017 (4) 0.0103 (4) 0.0004 (4)
C1 0.0280 (7) 0.0202 (6) 0.0213 (6) 0.0012 (5) 0.0131 (6) 0.0010 (5)
C2 0.0209 (6) 0.0179 (6) 0.0209 (6) −0.0006 (5) 0.0106 (5) 0.0013 (5)
C3 0.0281 (7) 0.0239 (7) 0.0228 (7) 0.0030 (5) 0.0144 (6) 0.0004 (5)
C4 0.0368 (8) 0.0201 (7) 0.0310 (8) 0.0052 (6) 0.0199 (7) 0.0015 (6)
C5 0.0344 (8) 0.0219 (7) 0.0297 (7) 0.0059 (6) 0.0173 (6) 0.0062 (6)
C6 0.0327 (7) 0.0226 (7) 0.0222 (7) 0.0031 (6) 0.0156 (6) 0.0032 (5)
C7 0.0202 (6) 0.0199 (6) 0.0204 (6) 0.0027 (5) 0.0101 (5) 0.0008 (5)
C8 0.0225 (6) 0.0233 (6) 0.0182 (6) −0.0015 (5) 0.0089 (5) 0.0009 (5)
C9 0.0229 (6) 0.0219 (6) 0.0168 (6) −0.0020 (5) 0.0111 (5) −0.0024 (5)
C10 0.0218 (6) 0.0234 (7) 0.0174 (6) −0.0015 (5) 0.0099 (5) −0.0028 (5)
C11 0.0262 (7) 0.0198 (6) 0.0201 (6) −0.0008 (5) 0.0127 (6) −0.0031 (5)
C12 0.0294 (7) 0.0191 (6) 0.0253 (7) −0.0019 (5) 0.0171 (6) −0.0028 (5)
C13 0.0228 (7) 0.0248 (7) 0.0251 (7) −0.0021 (5) 0.0141 (6) −0.0035 (5)
C14 0.0215 (6) 0.0232 (6) 0.0182 (6) 0.0026 (5) 0.0106 (5) −0.0010 (5)
C15 0.0294 (7) 0.0210 (7) 0.0217 (6) −0.0002 (5) 0.0136 (6) −0.0024 (5)
C16 0.0412 (8) 0.0257 (7) 0.0366 (8) 0.0081 (6) 0.0183 (7) 0.0110 (6)
C17 0.0244 (7) 0.0228 (7) 0.0168 (6) 0.0033 (5) 0.0087 (5) 0.0006 (5)
C18 0.0230 (6) 0.0204 (6) 0.0164 (6) 0.0018 (5) 0.0109 (5) 0.0026 (5)
C19 0.0191 (6) 0.0227 (6) 0.0162 (6) 0.0015 (5) 0.0092 (5) 0.0040 (5)
C20 0.0236 (6) 0.0202 (6) 0.0180 (6) −0.0003 (5) 0.0116 (5) 0.0035 (5)
C21 0.0242 (7) 0.0194 (6) 0.0255 (7) 0.0027 (5) 0.0137 (6) 0.0024 (5)
C22 0.0193 (6) 0.0245 (7) 0.0274 (7) 0.0011 (5) 0.0109 (6) 0.0022 (5)
C23 0.0234 (6) 0.0221 (6) 0.0190 (6) −0.0035 (5) 0.0108 (5) −0.0001 (5)
C24 0.0258 (7) 0.0200 (6) 0.0165 (6) 0.0030 (5) 0.0106 (5) 0.0040 (5)
C25 0.0338 (7) 0.0207 (7) 0.0276 (7) −0.0019 (6) 0.0145 (6) −0.0046 (5)

Geometric parameters (Å, °)

O1—C15 1.2075 (17) C7—H7 0.96
O2—C15 1.3519 (19) C8—C9 1.509 (2)
O2—C16 1.4432 (16) C8—H8a 0.96
O3—C14 1.3578 (14) C8—H8b 0.96
O3—H3 0.90 (2) C9—C10 1.3812 (16)
O4—C24 1.2105 (17) C9—C14 1.4088 (19)
O5—C24 1.3488 (19) C10—C11 1.393 (2)
O5—C25 1.4426 (15) C10—H10 0.96
O6—C23 1.3595 (14) C11—C12 1.394 (2)
O6—H6 0.87 (2) C11—C15 1.4791 (16)
N1—C1 1.484 (2) C12—C13 1.3828 (16)
N1—C2 1.4732 (17) C12—H12 0.96
N1—C8 1.4686 (15) C13—C14 1.389 (2)
N2—C1 1.480 (2) C13—H13 0.96
N2—C7 1.4741 (18) C16—H16a 0.96
N2—C17 1.4775 (16) C16—H16b 0.96
C1—H1a 0.96 C16—H16c 0.96
C1—H1b 0.96 C17—C18 1.511 (2)
C2—C3 1.515 (2) C17—H17a 0.96
C2—C7 1.5081 (19) C17—H17b 0.96
C2—H2 0.96 C18—C19 1.3850 (16)
C3—C4 1.535 (2) C18—C23 1.4021 (18)
C3—H3a 0.96 C19—C20 1.391 (2)
C3—H3b 0.96 C19—H19 0.96
C4—C5 1.531 (2) C20—C21 1.3951 (18)
C4—H4a 0.96 C20—C24 1.4763 (16)
C4—H4b 0.96 C21—C22 1.3804 (17)
C5—C6 1.533 (2) C21—H21 0.96
C5—H5a 0.96 C22—C23 1.390 (2)
C5—H5b 0.96 C22—H22 0.96
C6—C7 1.515 (2) C25—H25a 0.96
C6—H6a 0.96 C25—H25b 0.96
C6—H6b 0.96 C25—H25c 0.96
C15—O2—C16 115.40 (11) C8—C9—C14 120.41 (10)
C14—O3—H3 103.5 (11) C10—C9—C14 118.31 (13)
C24—O5—C25 115.23 (11) C9—C10—C11 121.95 (13)
C23—O6—H6 104.1 (11) C9—C10—H10 119.0222
C1—N1—C2 106.36 (12) C11—C10—H10 119.0236
C1—N1—C8 113.53 (10) C10—C11—C12 118.98 (11)
C2—N1—C8 114.66 (9) C10—C11—C15 117.78 (12)
C1—N2—C7 103.68 (13) C12—C11—C15 123.23 (13)
C1—N2—C17 112.66 (10) C11—C12—C13 120.07 (14)
C7—N2—C17 112.18 (9) C11—C12—H12 119.9668
N1—C1—N2 105.84 (10) C13—C12—H12 119.9653
N1—C1—H1a 109.4722 C12—C13—C14 120.53 (13)
N1—C1—H1b 109.4722 C12—C13—H13 119.7345
N2—C1—H1a 109.4704 C14—C13—H13 119.7351
N2—C1—H1b 109.4705 O3—C14—C9 121.21 (12)
H1a—C1—H1b 112.8746 O3—C14—C13 118.64 (12)
N1—C2—C3 116.58 (14) C9—C14—C13 120.14 (11)
N1—C2—C7 100.87 (10) O1—C15—O2 122.75 (11)
N1—C2—H2 111.3309 O1—C15—C11 124.71 (14)
C3—C2—C7 111.32 (10) O2—C15—C11 112.54 (12)
C3—C2—H2 100.891 O2—C16—H16a 109.472
C7—C2—H2 116.5959 O2—C16—H16b 109.4708
C2—C3—C4 108.75 (15) O2—C16—H16c 109.4708
C2—C3—H3a 109.472 H16a—C16—H16b 109.4716
C2—C3—H3b 109.4708 H16a—C16—H16c 109.4711
C4—C3—H3a 109.4717 H16b—C16—H16c 109.471
C4—C3—H3b 109.471 N2—C17—C18 112.97 (9)
H3a—C3—H3b 110.1798 N2—C17—H17a 109.4721
C3—C4—C5 112.91 (11) N2—C17—H17b 109.469
C3—C4—H4a 109.4727 C18—C17—H17a 109.4721
C3—C4—H4b 109.4709 C18—C17—H17b 109.471
C5—C4—H4a 109.4714 H17a—C17—H17b 105.728
C5—C4—H4b 109.4703 C17—C18—C19 120.39 (11)
H4a—C4—H4b 105.7947 C17—C18—C23 121.45 (10)
C4—C5—C6 112.36 (11) C19—C18—C23 118.06 (13)
C4—C5—H5a 109.4713 C18—C19—C20 121.81 (12)
C4—C5—H5b 109.4717 C18—C19—H19 119.0941
C6—C5—H5a 109.4708 C20—C19—H19 119.0943
C6—C5—H5b 109.4712 C19—C20—C21 119.18 (11)
H5a—C5—H5b 106.4244 C19—C20—C24 118.18 (12)
C5—C6—C7 107.28 (15) C21—C20—C24 122.60 (13)
C5—C6—H6a 109.4711 C20—C21—C22 119.93 (13)
C5—C6—H6b 109.4712 C20—C21—H21 120.0335
C7—C6—H6a 109.4714 C22—C21—H21 120.0348
C7—C6—H6b 109.4712 C21—C22—C23 120.34 (12)
H6a—C6—H6b 111.5736 C21—C22—H22 119.8287
N2—C7—C2 101.53 (9) C23—C22—H22 119.8289
N2—C7—C6 118.45 (15) O6—C23—C18 121.67 (13)
N2—C7—H7 109.7793 O6—C23—C22 117.68 (11)
C2—C7—C6 111.47 (10) C18—C23—C22 120.66 (11)
C2—C7—H7 116.9848 O4—C24—O5 122.57 (11)
C6—C7—H7 99.4758 O4—C24—C20 124.81 (14)
N1—C8—C9 111.57 (9) O5—C24—C20 112.61 (12)
N1—C8—H8a 109.4706 O5—C25—H25a 109.4719
N1—C8—H8b 109.4706 O5—C25—H25b 109.4705
C9—C8—H8a 109.4711 O5—C25—H25c 109.4708
C9—C8—H8b 109.4718 H25a—C25—H25b 109.4709
H8a—C8—H8b 107.2874 H25a—C25—H25c 109.472
C8—C9—C10 121.21 (12) H25b—C25—H25c 109.4712
C10—C11—C15—O1 1.3 (2) C19—C20—C24—O4 −10.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O3—H3···N1 0.90 (2) 1.80 (2) 2.6383 (18) 154.3 (16)
O6—H6···N2 0.87 (2) 1.88 (2) 2.6814 (18) 153.0 (18)
C2—H2···O1i 0.96 2.57 3.414 (2) 146
C4—H4b···O1i 0.96 2.58 3.353 (2) 137
C16—H16c···O6ii 0.96 2.59 3.350 (2) 136

Symmetry codes: (i) −x+1/2, −y+3/2, −z+2; (ii) x, −y+1, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5658).

References

  1. Agilent (2010). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact, Bonn, Germany.
  4. Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.
  5. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  6. Murray-Rust, P. & Riddell, F. G. (1975). Can. J. Chem. 53, 1933–1935.
  7. Petříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006 Institute of Physics, Praha, Czech Republic.
  8. Rivera, A., Quiroga, D., Ríos-Motta, J., Fejfarová, K. & Dušek, M. (2011a). Acta Cryst. E67, o2627–o2628. [DOI] [PMC free article] [PubMed]
  9. Rivera, A., Quiroga, D., Ríos-Motta, J., Fejfarová, K. & Dušek, M. (2011b). Acta Cryst. E67, o2297. [DOI] [PMC free article] [PubMed]
  10. Rivera, A., Quiroga, D., Ríos-Motta, J., Fejfarová, K. & Dušek, M. (2011c). Acta Cryst. E67, o2817–o2818. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811040906/bt5658sup1.cif

e-67-o2911-sup1.cif (23.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811040906/bt5658Isup2.hkl

e-67-o2911-Isup2.hkl (167.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811040906/bt5658Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES