Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 12;67(Pt 11):o2917. doi: 10.1107/S160053681103978X

Ethyl 4-chloro-3,5-dinitro­benzoate

Hao Wu a, Min-Hao Xie a, Ya-Ling Liu a, Yong-Jun He a, Pei Zou a,*
PMCID: PMC3247331  PMID: 22219949

Abstract

In the title compound, C9H7ClN2O6, the nitro groups and the ester group make dihedral angles of 44.0 (1), 89.6 (1) and 164.1 (1)°, respectively, with the benzene ring. In the crystal, mol­ecules are linked through weak C—H⋯O hydrogen-bonding inter­actions. Mol­ecules are stacked via π–π inter­actions about inversion centers, with a centroid–centroid distance of 3.671 (2) Å.

Related literature

For applications of the title compound as a herbicide and a related structure, see: Liu et al. (2010).graphic file with name e-67-o2917-scheme1.jpg

Experimental

Crystal data

  • C9H7ClN2O6

  • M r = 274.62

  • Monoclinic, Inline graphic

  • a = 7.744 (2) Å

  • b = 21.389 (6) Å

  • c = 7.241 (2) Å

  • β = 110.504 (4)°

  • V = 1123.3 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 133 K

  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Rigaku SPIDER diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.899, T max = 0.965

  • 8777 measured reflections

  • 2549 independent reflections

  • 1939 reflections with I > 2σ(I)

  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.098

  • S = 1.00

  • 2549 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681103978X/pv2450sup1.cif

e-67-o2917-sup1.cif (15.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681103978X/pv2450Isup2.hkl

e-67-o2917-Isup2.hkl (125.2KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681103978X/pv2450Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O2i 0.95 2.32 3.157 (3) 147

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors acknowledge financial support from Jiangsu Institute of Nuclear Medicine.

supplementary crystallographic information

Comment

The title compound is useful as a herbicide (Liu et al., 2010). In the title molecule (Fig. 1), two nitro groups (O3/N1/O4 and O5/N2/O6) attached at C2 and C4 and the ester group (O1/C7/O2) attached at C6 form dihedral angles of 44.0 (1), 89.6 (1) and 164.1 (1)°, respectively, with the mean plane of the benzene ring (C1–C6). In the cyrstal structure, the molecules are linked through weak C—H···O hydrogen bonding interactions. The molecules are stacked viaπ-π interactions, about inversion centers with the ring centroid-centroid distance of 3.671 (2) Å.

Experimental

A sample of commercial ethyl 4-chloro-3,5-dinitrobenzoate (Aldrich) was crystalized by slow evaporation of a solution in methanol yielding colorless chunky crystals after several days.

Refinement

H atoms were placed in calculated positions with C—H = 0.99, 0.98 or 0.95 Å for methylene, methyl or aryl type H-atoms, respectively, and were refined in a riding mode with Uiso(H) = 1.2 or 1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Part of the packing of the title compound, viewed down the c direction; dashed lines indicate hydrogen bonds.

Crystal data

C9H7ClN2O6 F(000) = 560
Mr = 274.62 Dx = 1.624 Mg m3
Monoclinic, P21/c Melting point: 357(2) K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 7.744 (2) Å Cell parameters from 2718 reflections
b = 21.389 (6) Å θ = 3.2–27.5°
c = 7.241 (2) Å µ = 0.36 mm1
β = 110.504 (4)° T = 133 K
V = 1123.3 (5) Å3 Block, colorless
Z = 4 0.30 × 0.20 × 0.10 mm

Data collection

Rigaku SPIDER diffractometer 2549 independent reflections
Radiation source: Rotating Anode 1939 reflections with I > 2σ(I)
graphite Rint = 0.034
ω scans θmax = 27.5°, θmin = 3.8°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) h = −8→10
Tmin = 0.899, Tmax = 0.965 k = −27→27
8777 measured reflections l = −9→9

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0496P)2 + 0.269P] where P = (Fo2 + 2Fc2)/3
2549 reflections (Δ/σ)max < 0.001
164 parameters Δρmax = 0.51 e Å3
0 restraints Δρmin = −0.32 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.66615 (7) 0.68101 (2) 0.67393 (8) 0.02902 (15)
O1 0.82698 (18) 0.39122 (6) 0.43011 (19) 0.0229 (3)
O2 0.6015 (2) 0.41837 (6) 0.14870 (19) 0.0283 (3)
O3 0.82102 (19) 0.51915 (7) 1.00581 (19) 0.0269 (3)
O4 0.9456 (2) 0.60842 (7) 0.9835 (2) 0.0402 (4)
O5 0.3393 (3) 0.65336 (10) 0.2213 (3) 0.0610 (6)
O6 0.5882 (3) 0.68236 (8) 0.1760 (3) 0.0562 (6)
N1 0.8513 (2) 0.56285 (8) 0.9112 (2) 0.0237 (4)
N2 0.5021 (3) 0.64949 (8) 0.2496 (2) 0.0286 (4)
C1 0.7812 (2) 0.49987 (8) 0.6145 (3) 0.0172 (4)
H1 0.8417 0.4660 0.6966 0.021*
C2 0.7714 (2) 0.55765 (8) 0.6956 (3) 0.0177 (4)
C3 0.6846 (2) 0.60877 (8) 0.5805 (3) 0.0189 (4)
C4 0.6034 (2) 0.59805 (8) 0.3785 (3) 0.0194 (4)
C5 0.6100 (3) 0.54110 (8) 0.2923 (3) 0.0194 (4)
H5 0.5530 0.5357 0.1539 0.023*
C6 0.7015 (2) 0.49173 (8) 0.4111 (3) 0.0166 (4)
C7 0.7039 (2) 0.43024 (8) 0.3140 (3) 0.0178 (4)
C8 0.8358 (3) 0.32869 (8) 0.3507 (3) 0.0232 (4)
H8A 0.9010 0.3303 0.2551 0.028*
H8B 0.7101 0.3121 0.2829 0.028*
C9 0.9385 (3) 0.28811 (10) 0.5225 (3) 0.0317 (5)
H9A 1.0599 0.3064 0.5927 0.048*
H9B 0.9540 0.2463 0.4752 0.048*
H9C 0.8689 0.2851 0.6121 0.048*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0369 (3) 0.0164 (2) 0.0335 (3) 0.0007 (2) 0.0121 (2) −0.00696 (19)
O1 0.0279 (8) 0.0157 (6) 0.0196 (7) 0.0058 (5) 0.0016 (6) −0.0021 (5)
O2 0.0401 (9) 0.0187 (7) 0.0173 (7) 0.0037 (6) −0.0012 (6) −0.0029 (5)
O3 0.0299 (8) 0.0321 (8) 0.0197 (7) 0.0041 (6) 0.0102 (6) 0.0041 (6)
O4 0.0530 (10) 0.0306 (9) 0.0267 (8) −0.0122 (7) 0.0010 (7) −0.0100 (6)
O5 0.0495 (12) 0.0778 (15) 0.0620 (13) 0.0438 (10) 0.0275 (10) 0.0343 (11)
O6 0.0571 (12) 0.0344 (10) 0.0572 (12) −0.0177 (8) −0.0049 (9) 0.0259 (9)
N1 0.0249 (9) 0.0255 (9) 0.0190 (8) 0.0027 (7) 0.0058 (7) −0.0032 (7)
N2 0.0392 (11) 0.0175 (9) 0.0226 (9) 0.0054 (8) 0.0027 (8) 0.0015 (7)
C1 0.0177 (9) 0.0149 (8) 0.0176 (9) 0.0010 (7) 0.0046 (7) 0.0016 (7)
C2 0.0189 (10) 0.0195 (9) 0.0140 (9) −0.0019 (7) 0.0048 (7) −0.0009 (7)
C3 0.0194 (10) 0.0146 (9) 0.0233 (9) −0.0019 (7) 0.0081 (8) −0.0029 (7)
C4 0.0211 (10) 0.0151 (9) 0.0211 (9) 0.0026 (7) 0.0063 (8) 0.0042 (7)
C5 0.0224 (10) 0.0180 (9) 0.0164 (9) 0.0001 (7) 0.0051 (8) 0.0015 (7)
C6 0.0180 (9) 0.0146 (8) 0.0172 (8) −0.0006 (7) 0.0062 (7) −0.0001 (7)
C7 0.0210 (10) 0.0153 (9) 0.0179 (9) 0.0010 (7) 0.0077 (8) 0.0017 (7)
C8 0.0300 (11) 0.0140 (9) 0.0230 (10) 0.0032 (8) 0.0062 (8) −0.0029 (7)
C9 0.0426 (13) 0.0225 (11) 0.0285 (11) 0.0077 (9) 0.0104 (10) 0.0031 (8)

Geometric parameters (Å, °)

Cl1—C3 1.7125 (19) C2—C3 1.396 (3)
O1—C7 1.323 (2) C3—C4 1.394 (3)
O1—C8 1.467 (2) C4—C5 1.378 (3)
O2—C7 1.209 (2) C5—C6 1.389 (2)
O3—N1 1.229 (2) C5—H5 0.9500
O4—N1 1.220 (2) C6—C7 1.495 (2)
O5—N2 1.207 (2) C8—C9 1.497 (3)
O6—N2 1.213 (2) C8—H8A 0.9900
N1—C2 1.468 (2) C8—H8B 0.9900
N2—C4 1.478 (2) C9—H9A 0.9800
C1—C2 1.382 (2) C9—H9B 0.9800
C1—C6 1.394 (2) C9—H9C 0.9800
C1—H1 0.9500
C7—O1—C8 116.64 (14) C4—C5—H5 120.6
O4—N1—O3 124.79 (17) C6—C5—H5 120.6
O4—N1—C2 118.86 (16) C5—C6—C1 120.02 (16)
O3—N1—C2 116.32 (16) C5—C6—C7 117.72 (16)
O5—N2—O6 126.00 (19) C1—C6—C7 122.22 (16)
O5—N2—C4 116.76 (18) O2—C7—O1 124.99 (17)
O6—N2—C4 117.18 (18) O2—C7—C6 122.60 (16)
C2—C1—C6 119.39 (16) O1—C7—C6 112.40 (15)
C2—C1—H1 120.3 O1—C8—C9 106.70 (16)
C6—C1—H1 120.3 O1—C8—H8A 110.4
C1—C2—C3 122.25 (17) C9—C8—H8A 110.4
C1—C2—N1 117.00 (16) O1—C8—H8B 110.4
C3—C2—N1 120.72 (16) C9—C8—H8B 110.4
C4—C3—C2 116.31 (16) H8A—C8—H8B 108.6
C4—C3—Cl1 119.57 (14) C8—C9—H9A 109.5
C2—C3—Cl1 124.07 (15) C8—C9—H9B 109.5
C5—C4—C3 123.11 (17) H9A—C9—H9B 109.5
C5—C4—N2 117.89 (17) C8—C9—H9C 109.5
C3—C4—N2 118.99 (16) H9A—C9—H9C 109.5
C4—C5—C6 118.89 (17) H9B—C9—H9C 109.5
C6—C1—C2—C3 −0.3 (3) O5—N2—C4—C3 −90.7 (2)
C6—C1—C2—N1 177.67 (16) O6—N2—C4—C3 92.1 (2)
O4—N1—C2—C1 136.26 (18) C3—C4—C5—C6 0.1 (3)
O3—N1—C2—C1 −41.8 (2) N2—C4—C5—C6 −178.79 (17)
O4—N1—C2—C3 −45.8 (3) C4—C5—C6—C1 1.4 (3)
O3—N1—C2—C3 136.14 (17) C4—C5—C6—C7 179.03 (16)
C1—C2—C3—C4 1.6 (3) C2—C1—C6—C5 −1.3 (3)
N1—C2—C3—C4 −176.24 (16) C2—C1—C6—C7 −178.82 (16)
C1—C2—C3—Cl1 179.17 (14) C8—O1—C7—O2 −1.0 (3)
N1—C2—C3—Cl1 1.3 (3) C8—O1—C7—C6 177.99 (15)
C2—C3—C4—C5 −1.5 (3) C5—C6—C7—O2 −15.2 (3)
Cl1—C3—C4—C5 −179.18 (15) C1—C6—C7—O2 162.35 (18)
C2—C3—C4—N2 177.30 (17) C5—C6—C7—O1 165.76 (16)
Cl1—C3—C4—N2 −0.4 (2) C1—C6—C7—O1 −16.6 (2)
O5—N2—C4—C5 88.2 (2) C7—O1—C8—C9 −163.27 (17)
O6—N2—C4—C5 −89.0 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C5—H5···O2i 0.95 2.32 3.157 (3) 147

Symmetry codes: (i) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2450).

References

  1. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  2. Liu, Y.-L., Zou, P., Xie, M.-H., Wu, H. & He, Y.-J. (2010). Acta Cryst. E66, o62. [DOI] [PMC free article] [PubMed]
  3. Rigaku (2004). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681103978X/pv2450sup1.cif

e-67-o2917-sup1.cif (15.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681103978X/pv2450Isup2.hkl

e-67-o2917-Isup2.hkl (125.2KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681103978X/pv2450Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES