Abstract
In the title compound, C8H9N4S−·C2H3O2 −, the cation is essentially planar (r.m.s deviation = 0.037 Å) with the guanidine unit bent out of the plane of the fused-ring system by 4.6 (3)°. In the asymmetric unit, the cations and anions are linked into R 2 2(8) motifs. In the crystal, further N—H⋯O and N—H⋯N hydrogen bonds link the components into a two-dimensional network.
Related literature
For the crystal structure of the neutral 2-(1,3-benzothiazol-2-yl)guanidine molecule, see: Mohamed et al. (2011 ▶). For hydrogen-bond motifs, see: Bernstein et al. (1995 ▶).
Experimental
Crystal data
C8H9N4S+·C2H3O2 −
M r = 252.30
Orthorhombic,
a = 12.596 (2) Å
b = 11.276 (2) Å
c = 8.0936 (12) Å
V = 1149.6 (4) Å3
Z = 4
Mo Kα radiation
μ = 0.28 mm−1
T = 120 K
0.14 × 0.10 × 0.02 mm
Data collection
Bruker–Nonius APEXII CCD camera on κ-goniostat diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2009 ▶) T min = 0.962, T max = 0.995
7697 measured reflections
1991 independent reflections
1301 reflections with I > 2σ(I)
R int = 0.116
Refinement
R[F 2 > 2σ(F 2)] = 0.078
wR(F 2) = 0.154
S = 1.06
1991 reflections
155 parameters
1 restraint
H-atom parameters constrained
Δρmax = 0.42 e Å−3
Δρmin = −0.36 e Å−3
Absolute structure: Flack (1983 ▶), 897 Friedel pairs
Flack parameter: 0.3 (2)
Data collection: COLLECT (Hooft, 1998 ▶); cell refinement: DENZO (Otwinowski & Minor, 1997 ▶) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 ▶); software used to prepare material for publication: WinGX (Farrugia, 1999 ▶).
Supplementary Material
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681104089X/bx2373sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681104089X/bx2373Isup2.hkl
Supplementary material file. DOI: 10.1107/S160053681104089X/bx2373Isup3.mol
Supplementary material file. DOI: 10.1107/S160053681104089X/bx2373Isup4.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N2—H2⋯O12 | 0.88 | 1.82 | 2.671 (8) | 162 |
| N3—H3A⋯O11i | 0.88 | 2.06 | 2.760 (8) | 136 |
| N3—H3B⋯N1 | 0.88 | 2.05 | 2.713 (9) | 131 |
| N4—H4A⋯O12ii | 0.88 | 2.03 | 2.861 (7) | 158 |
| N4—H4B⋯O11 | 0.88 | 1.91 | 2.790 (8) | 173 |
Symmetry codes: (i)
; (ii)
.
Acknowledgments
The authors would like to thank Manchester Metropolitan University, Sohag University and the EPSRC for funding the crystallographic facilities.
supplementary crystallographic information
Comment
The title compound was synthesized and exists as the acetate salt of benzothiazolo-2-guanidinium. The benzothiazolo-2-guanidinium cation is almost planar with the guanidine unit bent out of the plane of the fused-ring system by just 4.6 (3)°. In the asymmetric unit, The cations and anions are linked into R22 (8) motif (Bernstein, et al., 1995). The crystal packing is stabilized by intermolecular hydrogen bonds involving the cations and acetate counter-ions, Table 1, Fig.2.
Experimental
A mixture of 1 mmol of 2-guanidyl benzothiazole with few drops of glacial acetic acid was heated in ethanol for 2 hours. The mixture was left at room temperature for two days to afford the shiny white crystals of benzothiazolo-2-guanidinium acetate in 94% yield. The single-crystal was obtained from a slow evaporation of the ethanolic solution of product over two days.
Refinement
H atoms were positioned geometrically [C—H = 0.95 or 0.98 Å and N—H = 0.88 Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(C) respectively and Uiso(H) = 1.2Ueq(N).
Figures
Fig. 1.
The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
A partial packing diagram for (I), showing the intermolecular and intramolecular hydrogen bonding (symmetry codes: (i) : -x+1, y,z+1/2; (ii) x+1/2,-y,z)
Crystal data
| C8H9N4S+·C2H3O2− | Dx = 1.458 Mg m−3 |
| Mr = 252.30 | Melting point = 463–465 K |
| Orthorhombic, Pca21 | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: P 2c -2ac | Cell parameters from 2099 reflections |
| a = 12.596 (2) Å | θ = 2.9–27.5° |
| b = 11.276 (2) Å | µ = 0.28 mm−1 |
| c = 8.0936 (12) Å | T = 120 K |
| V = 1149.6 (4) Å3 | Plate, colourless |
| Z = 4 | 0.14 × 0.10 × 0.02 mm |
| F(000) = 528 |
Data collection
| Bruker–Nonius APEXII CCD camera on κ-goniostat diffractometer | 1991 independent reflections |
| Radiation source: Bruker–Nonius FR591 rotating anode | 1301 reflections with I > 2σ(I) |
| 10 cm confocal mirrors | Rint = 0.116 |
| Detector resolution: 4096x4096pixels / 62x62mm pixels mm-1 | θmax = 25.0°, θmin = 3.2° |
| φ and ω scans | h = −14→14 |
| Absorption correction: multi-scan (SADABS; Bruker, 2009) | k = −12→13 |
| Tmin = 0.962, Tmax = 0.995 | l = −9→9 |
| 7697 measured reflections |
Refinement
| Refinement on F2 | Secondary atom site location: difference Fourier map |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.078 | H-atom parameters constrained |
| wR(F2) = 0.154 | w = 1/[σ2(Fo2) + (0.P)2 + 4.3921P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.06 | (Δ/σ)max < 0.001 |
| 1991 reflections | Δρmax = 0.42 e Å−3 |
| 155 parameters | Δρmin = −0.36 e Å−3 |
| 1 restraint | Absolute structure: Flack (1983), 897 Friedel pairs |
| Primary atom site location: structure-invariant direct methods | Flack parameter: 0.3 (2) |
Special details
| Experimental. SADABS was used to perform the Absorption correction. Parameter refinement on 6249 reflections reduced R(int) from 0.1275 to 0.0768. Ratio of minimum to maximum apparent transmission: 0.627938. The given Tmin and Tmax were generated using the SHELX SIZE command |
| Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| C1 | 0.1251 (6) | 0.3579 (8) | 0.7101 (8) | 0.0287 (19) | |
| C2 | 0.2293 (5) | 0.3958 (7) | 0.7510 (9) | 0.0232 (17) | |
| C3 | 0.2434 (6) | 0.4986 (7) | 0.8427 (10) | 0.037 (2) | |
| H3 | 0.3127 | 0.5226 | 0.8751 | 0.045* | |
| C4 | 0.1569 (6) | 0.5650 (8) | 0.8861 (9) | 0.037 (2) | |
| H4 | 0.1667 | 0.6362 | 0.9469 | 0.044* | |
| C5 | 0.0545 (6) | 0.5299 (8) | 0.8424 (9) | 0.037 (2) | |
| H5 | −0.0043 | 0.5775 | 0.8740 | 0.044* | |
| C6 | 0.0372 (6) | 0.4267 (8) | 0.7537 (9) | 0.034 (2) | |
| H6 | −0.0326 | 0.4034 | 0.7233 | 0.040* | |
| C7 | 0.2709 (5) | 0.2345 (7) | 0.6117 (11) | 0.0262 (18) | |
| C8 | 0.4331 (5) | 0.1292 (8) | 0.5459 (9) | 0.030 (2) | |
| N1 | 0.3104 (5) | 0.3205 (6) | 0.6934 (7) | 0.0294 (16) | |
| N2 | 0.3265 (4) | 0.1462 (6) | 0.5312 (7) | 0.0295 (16) | |
| H2 | 0.2908 | 0.0978 | 0.4663 | 0.035* | |
| N3 | 0.4938 (5) | 0.2037 (6) | 0.6268 (7) | 0.0331 (17) | |
| H3A | 0.5628 | 0.1920 | 0.6311 | 0.040* | |
| H3B | 0.4655 | 0.2654 | 0.6768 | 0.040* | |
| N4 | 0.4741 (5) | 0.0366 (6) | 0.4707 (8) | 0.0347 (17) | |
| H4A | 0.5430 | 0.0241 | 0.4743 | 0.042* | |
| H4B | 0.4326 | −0.0128 | 0.4168 | 0.042* | |
| S1 | 0.13101 (12) | 0.22884 (17) | 0.5956 (3) | 0.0316 (5) | |
| C11 | 0.2365 (6) | −0.0922 (8) | 0.3103 (10) | 0.035 (2) | |
| C12 | 0.1654 (6) | −0.1819 (8) | 0.2300 (10) | 0.039 (2) | |
| H12A | 0.1089 | −0.1410 | 0.1695 | 0.058* | |
| H12B | 0.1340 | −0.2329 | 0.3149 | 0.058* | |
| H12C | 0.2069 | −0.2304 | 0.1531 | 0.058* | |
| O11 | 0.3349 (4) | −0.1038 (6) | 0.2875 (7) | 0.0417 (15) | |
| O12 | 0.1938 (4) | −0.0085 (5) | 0.3904 (7) | 0.0372 (14) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| C1 | 0.026 (4) | 0.041 (6) | 0.019 (4) | 0.002 (4) | −0.003 (3) | 0.003 (3) |
| C2 | 0.022 (4) | 0.019 (4) | 0.029 (4) | 0.001 (3) | −0.004 (3) | 0.000 (3) |
| C3 | 0.018 (3) | 0.062 (6) | 0.032 (4) | −0.006 (5) | 0.002 (3) | 0.004 (6) |
| C4 | 0.038 (5) | 0.035 (6) | 0.037 (5) | 0.000 (4) | 0.008 (4) | 0.002 (4) |
| C5 | 0.026 (4) | 0.045 (7) | 0.040 (5) | 0.002 (4) | 0.007 (4) | −0.008 (4) |
| C6 | 0.016 (4) | 0.049 (6) | 0.035 (5) | 0.007 (4) | 0.003 (3) | 0.010 (5) |
| C7 | 0.022 (3) | 0.036 (5) | 0.021 (4) | 0.005 (3) | 0.003 (4) | 0.007 (4) |
| C8 | 0.022 (4) | 0.037 (5) | 0.031 (5) | −0.003 (4) | −0.001 (3) | 0.010 (4) |
| N1 | 0.017 (3) | 0.040 (5) | 0.031 (4) | 0.002 (3) | 0.000 (3) | −0.003 (3) |
| N2 | 0.019 (3) | 0.040 (5) | 0.029 (4) | 0.000 (3) | 0.001 (3) | −0.002 (3) |
| N3 | 0.022 (3) | 0.040 (5) | 0.037 (4) | 0.009 (3) | −0.006 (3) | −0.001 (4) |
| N4 | 0.015 (3) | 0.037 (5) | 0.052 (4) | 0.003 (3) | 0.001 (3) | 0.001 (4) |
| S1 | 0.0167 (7) | 0.0426 (13) | 0.0355 (10) | −0.0010 (9) | −0.0014 (10) | −0.0046 (12) |
| C11 | 0.024 (5) | 0.045 (6) | 0.035 (5) | −0.002 (4) | −0.001 (4) | 0.000 (4) |
| C12 | 0.029 (4) | 0.041 (6) | 0.046 (5) | −0.002 (4) | 0.003 (4) | −0.006 (4) |
| O11 | 0.018 (3) | 0.049 (4) | 0.058 (4) | 0.000 (3) | 0.006 (2) | −0.015 (3) |
| O12 | 0.021 (3) | 0.045 (4) | 0.045 (3) | −0.003 (3) | 0.002 (3) | −0.010 (3) |
Geometric parameters (Å, °)
| C1—C6 | 1.398 (10) | C8—N3 | 1.311 (9) |
| C1—C2 | 1.420 (10) | C8—N4 | 1.314 (9) |
| C1—S1 | 1.727 (8) | C8—N2 | 1.361 (8) |
| C2—C3 | 1.388 (11) | N2—H2 | 0.8800 |
| C2—N1 | 1.408 (9) | N3—H3A | 0.8800 |
| C3—C4 | 1.368 (10) | N3—H3B | 0.8800 |
| C3—H3 | 0.9500 | N4—H4A | 0.8800 |
| C4—C5 | 1.395 (11) | N4—H4B | 0.8800 |
| C4—H4 | 0.9500 | C11—O11 | 1.260 (9) |
| C5—C6 | 1.384 (11) | C11—O12 | 1.265 (10) |
| C5—H5 | 0.9500 | C11—C12 | 1.499 (10) |
| C6—H6 | 0.9500 | C12—H12A | 0.9800 |
| C7—N1 | 1.275 (10) | C12—H12B | 0.9800 |
| C7—N2 | 1.381 (10) | C12—H12C | 0.9800 |
| C7—S1 | 1.768 (6) | ||
| C6—C1—C2 | 120.4 (7) | N3—C8—N2 | 121.9 (8) |
| C6—C1—S1 | 129.6 (6) | N4—C8—N2 | 117.3 (7) |
| C2—C1—S1 | 109.8 (6) | C7—N1—C2 | 110.3 (6) |
| C3—C2—N1 | 126.0 (7) | C8—N2—C7 | 124.1 (7) |
| C3—C2—C1 | 119.7 (7) | C8—N2—H2 | 118.0 |
| N1—C2—C1 | 114.3 (7) | C7—N2—H2 | 118.0 |
| C4—C3—C2 | 119.5 (8) | C8—N3—H3A | 120.0 |
| C4—C3—H3 | 120.3 | C8—N3—H3B | 120.0 |
| C2—C3—H3 | 120.3 | H3A—N3—H3B | 120.0 |
| C3—C4—C5 | 121.1 (8) | C8—N4—H4A | 120.0 |
| C3—C4—H4 | 119.5 | C8—N4—H4B | 120.0 |
| C5—C4—H4 | 119.5 | H4A—N4—H4B | 120.0 |
| C6—C5—C4 | 121.1 (8) | C1—S1—C7 | 88.5 (4) |
| C6—C5—H5 | 119.5 | O11—C11—O12 | 124.8 (8) |
| C4—C5—H5 | 119.5 | O11—C11—C12 | 117.0 (8) |
| C5—C6—C1 | 118.2 (7) | O12—C11—C12 | 118.2 (7) |
| C5—C6—H6 | 120.9 | C11—C12—H12A | 109.5 |
| C1—C6—H6 | 120.9 | C11—C12—H12B | 109.5 |
| N1—C7—N2 | 126.5 (6) | H12A—C12—H12B | 109.5 |
| N1—C7—S1 | 117.0 (6) | C11—C12—H12C | 109.5 |
| N2—C7—S1 | 116.4 (6) | H12A—C12—H12C | 109.5 |
| N3—C8—N4 | 120.7 (7) | H12B—C12—H12C | 109.5 |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N2—H2···O12 | 0.88 | 1.82 | 2.671 (8) | 162. |
| N3—H3A···O11i | 0.88 | 2.06 | 2.760 (8) | 136. |
| N3—H3B···N1 | 0.88 | 2.05 | 2.713 (9) | 131. |
| N4—H4A···O12ii | 0.88 | 2.03 | 2.861 (7) | 158. |
| N4—H4B···O11 | 0.88 | 1.91 | 2.790 (8) | 173. |
Symmetry codes: (i) −x+1, −y, z+1/2; (ii) x+1/2, −y, z.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2373).
References
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2009). SADABS Bruker AXS Inc., Madison, Wiscosin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
- Flack, H. D. (1983). Acta Cryst. A39, 876–881.
- Hooft, R. (1998). COLLECT Nonius BV, Delft, The Netherlands.
- Mohamed, S. K., El-Remaily, M. A. A., Soliman, A. M., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o786. [DOI] [PMC free article] [PubMed]
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681104089X/bx2373sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681104089X/bx2373Isup2.hkl
Supplementary material file. DOI: 10.1107/S160053681104089X/bx2373Isup3.mol
Supplementary material file. DOI: 10.1107/S160053681104089X/bx2373Isup4.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


