Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 12;67(Pt 11):o2923. doi: 10.1107/S1600536811039171

4,4′-Di-tert-butyl-2,2′-[(3aRS,7aRS)-2,3,3a,4,5,6,7,7a-octa­hydro-1H-1,3-benzimidazole-1,3-di­yl)bis­(methyl­ene)]diphenol

Augusto Rivera a,*, Dency José Pacheco a, Jaime Ríos-Motta a, Michaela Pojarová b, Michal Dušek b
PMCID: PMC3247337  PMID: 22219955

Abstract

In the title compound, C29H42N2O2, the heterocyclic ring has a twist conformation. The cyclohexane ring adopts a chair conformation. The dihedral angle between the aromatic rings is 32.74 (6)°. The mol­ecular conformation is stabilized by two intramolecular O—H⋯N hydrogen bonds with graph-set motif S(6). The crystal packing is stabilized by C—H⋯O and C—H⋯π inter­actions.

Related literature

For related structures, see: Rivera et al. (2009, 2010). For puckering parameters, see: Cremer & Pople (1975). For hydrogen-bond graph-set nomenclature, see: Bernstein et al. (1995).graphic file with name e-67-o2923-scheme1.jpg

Experimental

Crystal data

  • C29H42N2O2

  • M r = 450.65

  • Triclinic, Inline graphic

  • a = 6.2383 (2) Å

  • b = 14.2296 (5) Å

  • c = 15.6530 (6) Å

  • α = 105.942 (3)°

  • β = 95.737 (3)°

  • γ = 98.041 (3)°

  • V = 1308.87 (8) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.55 mm−1

  • T = 120 K

  • 0.22 × 0.10 × 0.08 mm

Data collection

  • Agilent Xcalibur Atlas Gemini Ultra diffractometer

  • Absorption correction: analytical (CrysAlis PRO; Agilent, 2011) T min = 0.246, T max = 0.581

  • 28373 measured reflections

  • 4676 independent reflections

  • 3632 reflections with I > 2σ(I)

  • R int = 0.139

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054

  • wR(F 2) = 0.143

  • S = 1.01

  • 4676 reflections

  • 304 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811039171/bt5652sup1.cif

e-67-o2923-sup1.cif (23.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811039171/bt5652Isup2.hkl

e-67-o2923-Isup2.hkl (229KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg3 and Cg4 are the centroids of the C9–C14 and C20–C25 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯N1 0.98 1.77 2.6585 (18) 148
O2—H1O2⋯N2 0.89 1.86 2.6794 (18) 153
C2—H2⋯O2i 0.98 2.45 3.367 (18) 155
C5—H5BCg3ii 0.96 2.87 3.625 (2) 135
C19—H19ACg4iii 0.96 2.84 3.6722 (18) 144

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

We acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB) de la Universidad Nacional de Colombia, for financial support of this work, as well as the Institutional research plan No. AVOZ10100521 of the Institute of Physics and the project Praemium Academiae of the Academy of Science of the Czech Republic.

supplementary crystallographic information

Comment

It is known that intramolecular O—H···N hydrogen bonds in Mannich and Schiff bases play a key role in the themodynamic stability of these bases. In our group, research has been focused on the development of novel di-Mannich bases (Rivera et al., 2009, 2010) and their hydrogen-bonded structures. In this work, we report the crystal structure of 4,4'-ditertbutyl-3,3',5,5'-tetramethyl-2,2'-[(3aR,7aR/3aS,7aS)-2,3,3a,4,5,6,7, 7a-octahydro-1H-1,3-benzimidazole-1,3-diyl)bis(methylene)]diphenol (I) as hydrogen bonding model. The molecular structure and atom-numbering scheme for (I) are shown in Fig.1. The bond lengths are normal and comparable to the corresponding values observed in the related structures (Rivera et al., 2009, 2010). The aromatic rings (C9—C14; C20—C25) are essentially planar with the maximum deviation from planarity being 0.0094 (19)° for atom C18.

As with related structures in this series, the heterocyclic ring has a twisted conformation on C2—C7, (Q(2)= 0.4380 (10) Å, φ = 120.3 (2)°, (Cremer & Pople, 1975), and as is typical for such Mannich bases and the molecular conformation is stabilized by two intramolecular O—H···N hydrogen-bond interaction with set graph motif S(6) (Bernstein et al. 1995). However, contrary to other structures, where the difference in the hydrogen bond lengths may be considered to be negligible, the two observed intramolecular hydrogen bond distances were different (Table 1). Considering the similarity of the chemical environment around of both nitrogen atoms, it is then surprising to see the difference in the O—H distances between O2—H2 [O—H = 0.89 Å (2)] and O1—H1 [O—H = 0.98 Å (18)], which is longer compared to the previous compounds (Rivera et al., 2009, 2010). Our observation for this difference can be correlated to the difference in the participation of each one of oxygen atoms in hydrogen-bond networks. Although a hydroxyl group is involved as an acceptor hydrogen bond in an intermolecular hydrogen bond, the other is a non-intermolecular-hydrogen-bonded hydroxyl group. The intermolecular hydrogen bonds [C2—H2A···O2i, symmetry code: x + 1, y, z] bridge the molecules through head-to-tail into a one-dimensional chain running parallel to the a axis (Figure 2). These chains are stabilized by C—H···π interactions (Table 1).

Experimental

To a dioxane:water (7 ml) solution of the aminal (2R,7R,11S,16S)-1,8,10,17- tetraazapentacyclo[8.8.1.18,17.02,7.011,16]- icosane (276 mg, 1.00 mmol) was added dropwise a dioxane solution (3 ml) containing two equivalents of p-tertbutylphenol (300 mg, 2.00 mmol). The mixture was refluxed for about 10 h. The solvent was evaporated under reduced pressure until a sticky residue appeared. The product was purified by chromatography on a silica column, and subjected to gradient elution with benzene:ethyl acetate (yield 47%, M.p. = 430–431 K). Single crystals of racemic (I) were grown from a chloroform: methanol solution by slow evaporation of the solvent at room temperature over a period of about 2 weeks.

Refinement

According to common practice H atoms bonded C atoms were kept in ideal positions with C—H distance 0.96 Å during the refinement. The isotropic displacement parameters of the hydrogen atoms were calculated as 1.2*Ueq of the parent atom. The distance between hydrogen and oxygen atom in hydroxyl group was fixed to the distance 0.87 Å. The quality of the crystals was very low. The selected crystal for measurement was the best one from several attempts.

Figures

Fig. 1.

Fig. 1.

A view of (I) with the numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Packing of the molecules of the title compound view along b axis.

Crystal data

C29H42N2O2 Z = 2
Mr = 450.65 F(000) = 492
Triclinic, P1 Dx = 1.143 Mg m3
Hall symbol: -P 1 Cu Kα radiation, λ = 1.5418 Å
a = 6.2383 (2) Å Cell parameters from 9605 reflections
b = 14.2296 (5) Å θ = 3.0–67.2°
c = 15.6530 (6) Å µ = 0.55 mm1
α = 105.942 (3)° T = 120 K
β = 95.737 (3)° Prism, colourless
γ = 98.041 (3)° 0.22 × 0.10 × 0.08 mm
V = 1308.87 (8) Å3

Data collection

Agilent Xcalibur Atlas Gemini Ultra diffractometer 4676 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source 3632 reflections with I > 2σ(I)
mirror Rint = 0.139
Detector resolution: 10.3784 pixels mm-1 θmax = 67.3°, θmin = 3.0°
Rotation method data acquisition using ω scans h = −7→7
Absorption correction: analytical (CrysAlis PRO; Agilent, 2011) k = −17→17
Tmin = 0.246, Tmax = 0.581 l = −18→18
28373 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0802P)2] where P = (Fo2 + 2Fc2)/3
4676 reflections (Δ/σ)max < 0.001
304 parameters Δρmax = 0.21 e Å3
2 restraints Δρmin = −0.27 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The isotropic temperature parameters of hydrogen atoms were calculated as 1.2*Ueq of the parent atom. The distance between hydrogen and oxygen atom in hydroxyl group was fixed to the distance 0.87 Å.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.7423 (2) 0.60526 (9) 0.68014 (9) 0.0334 (3)
H1O1 0.6083 0.5598 0.6803 0.040*
O2 −0.2846 (2) 0.45402 (10) 0.80993 (9) 0.0357 (3)
H1O2 −0.1676 0.4721 0.7865 0.043*
N1 0.3185 (2) 0.53749 (10) 0.67034 (9) 0.0253 (3)
N2 0.1289 (2) 0.48505 (10) 0.77727 (9) 0.0244 (3)
C1 0.2544 (3) 0.57266 (12) 0.76055 (11) 0.0266 (4)
H1A 0.3831 0.6001 0.8055 0.032*
H1B 0.1650 0.6235 0.7624 0.032*
C2 0.1894 (3) 0.39934 (12) 0.71235 (11) 0.0253 (4)
H2 0.3379 0.3924 0.7336 0.030*
C3 0.0424 (3) 0.29864 (12) 0.68838 (11) 0.0306 (4)
H3A −0.1059 0.3035 0.6670 0.037*
H3B 0.0398 0.2748 0.7407 0.037*
C4 0.1353 (4) 0.22741 (14) 0.61467 (13) 0.0379 (4)
H4A 0.2772 0.2182 0.6392 0.045*
H4B 0.0393 0.1633 0.5958 0.045*
C5 0.1597 (4) 0.26467 (14) 0.53294 (13) 0.0403 (5)
H5A 0.0157 0.2649 0.5033 0.048*
H5B 0.2295 0.2195 0.4908 0.048*
C6 0.2954 (3) 0.36938 (14) 0.55839 (12) 0.0363 (4)
H6A 0.4458 0.3683 0.5803 0.044*
H6B 0.2942 0.3937 0.5062 0.044*
C7 0.1961 (3) 0.43638 (12) 0.63083 (11) 0.0280 (4)
H7 0.0469 0.4394 0.6068 0.034*
C8 0.2926 (3) 0.60451 (12) 0.61501 (11) 0.0276 (4)
H8A 0.1475 0.6216 0.6156 0.033*
H8B 0.3069 0.5710 0.5534 0.033*
C9 0.4626 (3) 0.69832 (12) 0.64956 (11) 0.0255 (4)
C10 0.6796 (3) 0.69352 (12) 0.67912 (11) 0.0263 (4)
C11 0.8342 (3) 0.77961 (13) 0.70752 (11) 0.0299 (4)
H11 0.9777 0.7768 0.7279 0.036*
C12 0.7777 (3) 0.87005 (13) 0.70595 (11) 0.0290 (4)
H12 0.8842 0.9270 0.7254 0.035*
C13 0.5642 (3) 0.87735 (12) 0.67573 (11) 0.0268 (4)
C14 0.4105 (3) 0.78981 (12) 0.64918 (11) 0.0263 (4)
H14 0.2662 0.7930 0.6303 0.032*
C15 0.4973 (3) 0.97661 (13) 0.67471 (12) 0.0323 (4)
C16 0.4002 (4) 1.01787 (15) 0.76044 (15) 0.0449 (5)
H16A 0.2771 0.9708 0.7636 0.058*
H16B 0.3534 1.0791 0.7597 0.058*
H16C 0.5090 1.0295 0.8118 0.058*
C17 0.3244 (4) 0.96239 (14) 0.59319 (14) 0.0426 (5)
H17A 0.1925 0.9222 0.5988 0.055*
H17B 0.3783 0.9302 0.5393 0.055*
H17C 0.2942 1.0259 0.5905 0.055*
C18 0.6922 (4) 1.05243 (15) 0.67086 (17) 0.0472 (5)
H18A 0.6425 1.1116 0.6653 0.061*
H18B 0.7620 1.0252 0.6200 0.061*
H18C 0.7948 1.0682 0.7249 0.061*
C19 0.1725 (3) 0.48777 (12) 0.87265 (11) 0.0260 (4)
H19A 0.1612 0.5529 0.9106 0.031*
H19B 0.3203 0.4765 0.8860 0.031*
C20 0.0128 (3) 0.41008 (12) 0.89290 (11) 0.0259 (4)
C21 −0.2101 (3) 0.39674 (13) 0.85995 (11) 0.0288 (4)
C22 −0.3563 (3) 0.32395 (13) 0.87683 (12) 0.0321 (4)
H22 −0.5041 0.3147 0.8546 0.039*
C23 −0.2838 (3) 0.26467 (13) 0.92669 (12) 0.0299 (4)
H23 −0.3847 0.2161 0.9374 0.036*
C24 −0.0639 (3) 0.27594 (12) 0.96120 (11) 0.0269 (4)
C25 0.0807 (3) 0.34982 (12) 0.94307 (10) 0.0256 (4)
H25 0.2283 0.3592 0.9655 0.031*
C26 0.0192 (3) 0.20602 (13) 1.01118 (11) 0.0304 (4)
C27 −0.1570 (3) 0.16459 (15) 1.05918 (13) 0.0388 (4)
H27A −0.2092 0.2185 1.0983 0.050*
H27B −0.0958 0.1260 1.0938 0.050*
H27C −0.2763 0.1233 1.0155 0.050*
C28 0.0852 (4) 0.11927 (15) 0.94238 (13) 0.0417 (5)
H28A 0.1450 0.0767 0.9729 0.054*
H28B 0.1930 0.1446 0.9109 0.054*
H28C −0.0413 0.0823 0.9004 0.054*
C29 0.2192 (3) 0.25932 (15) 1.08137 (12) 0.0367 (4)
H29A 0.1840 0.3173 1.1218 0.048*
H29B 0.3383 0.2785 1.0518 0.048*
H29C 0.2609 0.2155 1.1145 0.048*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0310 (6) 0.0344 (6) 0.0392 (7) 0.0074 (5) 0.0080 (5) 0.0162 (5)
O2 0.0280 (6) 0.0433 (7) 0.0428 (7) 0.0066 (5) 0.0077 (5) 0.0232 (6)
N1 0.0319 (7) 0.0244 (7) 0.0210 (7) 0.0028 (6) 0.0063 (5) 0.0091 (5)
N2 0.0295 (7) 0.0236 (7) 0.0192 (7) 0.0032 (5) 0.0046 (5) 0.0053 (5)
C1 0.0319 (8) 0.0250 (8) 0.0217 (8) 0.0031 (7) 0.0061 (7) 0.0050 (6)
C2 0.0320 (8) 0.0243 (8) 0.0193 (8) 0.0048 (7) 0.0053 (6) 0.0052 (6)
C3 0.0390 (9) 0.0276 (8) 0.0239 (8) −0.0001 (7) 0.0072 (7) 0.0071 (7)
C4 0.0531 (11) 0.0270 (9) 0.0314 (10) 0.0018 (8) 0.0096 (8) 0.0062 (7)
C5 0.0603 (13) 0.0302 (9) 0.0262 (9) 0.0008 (9) 0.0121 (9) 0.0029 (8)
C6 0.0512 (11) 0.0321 (9) 0.0246 (9) 0.0017 (8) 0.0127 (8) 0.0071 (7)
C7 0.0340 (9) 0.0264 (8) 0.0224 (8) 0.0006 (7) 0.0044 (7) 0.0072 (7)
C8 0.0319 (8) 0.0285 (8) 0.0230 (8) 0.0009 (7) 0.0025 (7) 0.0112 (7)
C9 0.0285 (8) 0.0294 (8) 0.0191 (8) 0.0017 (7) 0.0063 (6) 0.0086 (6)
C10 0.0293 (8) 0.0320 (9) 0.0215 (8) 0.0063 (7) 0.0099 (6) 0.0113 (7)
C11 0.0262 (8) 0.0398 (10) 0.0240 (8) 0.0024 (7) 0.0056 (7) 0.0110 (7)
C12 0.0304 (9) 0.0311 (9) 0.0224 (8) −0.0026 (7) 0.0055 (7) 0.0059 (7)
C13 0.0311 (8) 0.0289 (8) 0.0200 (8) 0.0016 (7) 0.0074 (6) 0.0069 (6)
C14 0.0273 (8) 0.0308 (8) 0.0228 (8) 0.0032 (7) 0.0059 (6) 0.0113 (7)
C15 0.0366 (9) 0.0272 (9) 0.0319 (9) 0.0033 (7) 0.0080 (7) 0.0068 (7)
C16 0.0506 (12) 0.0362 (10) 0.0434 (11) 0.0067 (9) 0.0140 (9) 0.0024 (9)
C17 0.0557 (12) 0.0296 (9) 0.0424 (11) 0.0083 (8) −0.0004 (9) 0.0126 (8)
C18 0.0463 (11) 0.0354 (10) 0.0626 (14) 0.0005 (9) 0.0120 (10) 0.0208 (10)
C19 0.0285 (8) 0.0285 (8) 0.0193 (8) 0.0031 (6) 0.0047 (6) 0.0047 (6)
C20 0.0308 (8) 0.0280 (8) 0.0179 (7) 0.0050 (7) 0.0072 (6) 0.0039 (6)
C21 0.0299 (9) 0.0331 (9) 0.0246 (8) 0.0082 (7) 0.0072 (7) 0.0081 (7)
C22 0.0273 (8) 0.0365 (9) 0.0331 (9) 0.0044 (7) 0.0074 (7) 0.0106 (8)
C23 0.0312 (9) 0.0297 (8) 0.0278 (9) 0.0002 (7) 0.0100 (7) 0.0075 (7)
C24 0.0348 (9) 0.0275 (8) 0.0173 (7) 0.0040 (7) 0.0078 (7) 0.0043 (6)
C25 0.0285 (8) 0.0300 (8) 0.0169 (7) 0.0032 (7) 0.0056 (6) 0.0045 (6)
C26 0.0394 (9) 0.0300 (9) 0.0222 (8) 0.0043 (7) 0.0071 (7) 0.0083 (7)
C27 0.0463 (11) 0.0394 (10) 0.0343 (10) 0.0032 (8) 0.0105 (8) 0.0170 (8)
C28 0.0588 (13) 0.0361 (10) 0.0316 (10) 0.0154 (9) 0.0094 (9) 0.0077 (8)
C29 0.0451 (11) 0.0405 (10) 0.0261 (9) 0.0045 (8) 0.0028 (8) 0.0147 (8)

Geometric parameters (Å, °)

O1—C10 1.370 (2) C13—C15 1.531 (2)
O1—H1O1 0.9834 C14—H14 0.9300
O2—C21 1.370 (2) C15—C18 1.526 (3)
O2—H1O2 0.8859 C15—C16 1.530 (3)
N1—C7 1.465 (2) C15—C17 1.534 (3)
N1—C8 1.468 (2) C16—H16A 0.9600
N1—C1 1.478 (2) C16—H16B 0.9600
N2—C1 1.477 (2) C16—H16C 0.9600
N2—C2 1.479 (2) C17—H17A 0.9600
N2—C19 1.479 (2) C17—H17B 0.9600
C1—H1A 0.9700 C17—H17C 0.9600
C1—H1B 0.9700 C18—H18A 0.9600
C2—C7 1.510 (2) C18—H18B 0.9600
C2—C3 1.518 (2) C18—H18C 0.9600
C2—H2 0.9800 C19—C20 1.504 (2)
C3—C4 1.533 (3) C19—H19A 0.9700
C3—H3A 0.9700 C19—H19B 0.9700
C3—H3B 0.9700 C20—C25 1.391 (2)
C4—C5 1.526 (3) C20—C21 1.402 (2)
C4—H4A 0.9700 C21—C22 1.382 (3)
C4—H4B 0.9700 C22—C23 1.387 (3)
C5—C6 1.533 (3) C22—H22 0.9300
C5—H5A 0.9700 C23—C24 1.393 (2)
C5—H5B 0.9700 C23—H23 0.9300
C6—C7 1.514 (3) C24—C25 1.396 (2)
C6—H6A 0.9700 C24—C26 1.537 (2)
C6—H6B 0.9700 C25—H25 0.9300
C7—H7 0.9800 C26—C29 1.531 (3)
C8—C9 1.514 (2) C26—C27 1.532 (3)
C8—H8A 0.9700 C26—C28 1.534 (3)
C8—H8B 0.9700 C27—H27A 0.9600
C9—C14 1.387 (2) C27—H27B 0.9600
C9—C10 1.404 (2) C27—H27C 0.9600
C10—C11 1.383 (3) C28—H28A 0.9600
C11—C12 1.387 (3) C28—H28B 0.9600
C11—H11 0.9300 C28—H28C 0.9600
C12—C13 1.396 (2) C29—H29A 0.9600
C12—H12 0.9300 C29—H29B 0.9600
C13—C14 1.395 (2) C29—H29C 0.9600
C10—O1—H1O1 106.4 C13—C14—H14 118.4
C21—O2—H1O2 102.7 C18—C15—C16 108.66 (16)
C7—N1—C8 114.76 (13) C18—C15—C13 111.78 (15)
C7—N1—C1 105.78 (13) C16—C15—C13 108.71 (15)
C8—N1—C1 113.91 (13) C18—C15—C17 108.22 (16)
C1—N2—C2 104.36 (12) C16—C15—C17 108.85 (17)
C1—N2—C19 111.45 (12) C13—C15—C17 110.56 (14)
C2—N2—C19 115.31 (12) C15—C16—H16A 109.5
N2—C1—N1 106.28 (12) C15—C16—H16B 109.5
N2—C1—H1A 110.5 H16A—C16—H16B 109.5
N1—C1—H1A 110.5 C15—C16—H16C 109.5
N2—C1—H1B 110.5 H16A—C16—H16C 109.5
N1—C1—H1B 110.5 H16B—C16—H16C 109.5
H1A—C1—H1B 108.7 C15—C17—H17A 109.5
N2—C2—C7 100.86 (12) C15—C17—H17B 109.5
N2—C2—C3 119.27 (14) H17A—C17—H17B 109.5
C7—C2—C3 110.48 (13) C15—C17—H17C 109.5
N2—C2—H2 108.6 H17A—C17—H17C 109.5
C7—C2—H2 108.6 H17B—C17—H17C 109.5
C3—C2—H2 108.6 C15—C18—H18A 109.5
C2—C3—C4 107.44 (15) C15—C18—H18B 109.5
C2—C3—H3A 110.2 H18A—C18—H18B 109.5
C4—C3—H3A 110.2 C15—C18—H18C 109.5
C2—C3—H3B 110.2 H18A—C18—H18C 109.5
C4—C3—H3B 110.2 H18B—C18—H18C 109.5
H3A—C3—H3B 108.5 N2—C19—C20 110.98 (13)
C5—C4—C3 112.87 (16) N2—C19—H19A 109.4
C5—C4—H4A 109.0 C20—C19—H19A 109.4
C3—C4—H4A 109.0 N2—C19—H19B 109.4
C5—C4—H4B 109.0 C20—C19—H19B 109.4
C3—C4—H4B 109.0 H19A—C19—H19B 108.0
H4A—C4—H4B 107.8 C25—C20—C21 118.67 (16)
C4—C5—C6 112.16 (15) C25—C20—C19 121.69 (15)
C4—C5—H5A 109.2 C21—C20—C19 119.64 (15)
C6—C5—H5A 109.2 O2—C21—C22 119.48 (15)
C4—C5—H5B 109.2 O2—C21—C20 120.80 (15)
C6—C5—H5B 109.2 C22—C21—C20 119.71 (16)
H5A—C5—H5B 107.9 C21—C22—C23 120.34 (16)
C7—C6—C5 108.19 (16) C21—C22—H22 119.8
C7—C6—H6A 110.1 C23—C22—H22 119.8
C5—C6—H6A 110.1 C22—C23—C24 121.78 (16)
C7—C6—H6B 110.1 C22—C23—H23 119.1
C5—C6—H6B 110.1 C24—C23—H23 119.1
H6A—C6—H6B 108.4 C23—C24—C25 116.80 (15)
N1—C7—C2 101.63 (13) C23—C24—C26 121.90 (15)
N1—C7—C6 115.78 (15) C25—C24—C26 121.16 (15)
C2—C7—C6 111.66 (14) C20—C25—C24 122.69 (16)
N1—C7—H7 109.1 C20—C25—H25 118.7
C2—C7—H7 109.1 C24—C25—H25 118.7
C6—C7—H7 109.1 C29—C26—C27 108.02 (15)
N1—C8—C9 111.07 (13) C29—C26—C28 108.58 (16)
N1—C8—H8A 109.4 C27—C26—C28 108.83 (16)
C9—C8—H8A 109.4 C29—C26—C24 111.28 (14)
N1—C8—H8B 109.4 C27—C26—C24 111.77 (15)
C9—C8—H8B 109.4 C28—C26—C24 108.30 (14)
H8A—C8—H8B 108.0 C26—C27—H27A 109.5
C14—C9—C10 118.58 (15) C26—C27—H27B 109.5
C14—C9—C8 121.12 (15) H27A—C27—H27B 109.5
C10—C9—C8 120.25 (15) C26—C27—H27C 109.5
O1—C10—C11 119.16 (15) H27A—C27—H27C 109.5
O1—C10—C9 121.45 (15) H27B—C27—H27C 109.5
C11—C10—C9 119.38 (15) C26—C28—H28A 109.5
C10—C11—C12 120.79 (16) C26—C28—H28B 109.5
C10—C11—H11 119.6 H28A—C28—H28B 109.5
C12—C11—H11 119.6 C26—C28—H28C 109.5
C11—C12—C13 121.37 (15) H28A—C28—H28C 109.5
C11—C12—H12 119.3 H28B—C28—H28C 109.5
C13—C12—H12 119.3 C26—C29—H29A 109.5
C14—C13—C12 116.71 (15) C26—C29—H29B 109.5
C14—C13—C15 120.97 (15) H29A—C29—H29B 109.5
C12—C13—C15 122.28 (15) C26—C29—H29C 109.5
C9—C14—C13 123.14 (16) H29A—C29—H29C 109.5
C9—C14—H14 118.4 H29B—C29—H29C 109.5

Hydrogen-bond geometry (Å, °)

Cg3 and Cg4 are the centroids of the C9–C14 and C20–C25 benzene rings, respectively.
D—H···A D—H H···A D···A D—H···A
O1—H1O1···N1 0.98 1.77 2.6585 (18) 148
O2—H1O2···N2 0.89 1.86 2.6794 (18) 153
C2—H2···O2i 0.98 2.45 3.367 (18) 155
C5—H5B···Cg3ii 0.96 2.87 3.625 (2) 135
C19—H19A···Cg4iii 0.96 2.84 3.6722 (18) 144

Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y+1, −z+1; (iii) −x, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5652).

References

  1. Agilent (2011). CrysAlis PRO and CrysAlis PRO CCD. Agilent Technologies, Yarnton, England.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact, Bonn, Germany.
  4. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  5. Rivera, A., Quiroga, D., Ríos-Motta, J., Carda, J. & Peris, G. (2009). J. Chem. Crystallogr. 39, 827–830.
  6. Rivera, A., Quiroga, D., Ríos-Motta, J., Dušek, M. & Fejfarová, K. (2010). Acta Cryst. E66, o931. [DOI] [PMC free article] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811039171/bt5652sup1.cif

e-67-o2923-sup1.cif (23.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811039171/bt5652Isup2.hkl

e-67-o2923-Isup2.hkl (229KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES