Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 12;67(Pt 11):o2926–o2927. doi: 10.1107/S1600536811041110

N-(4-Bromo­phen­yl)-2-(naphthalen-1-yl)acetamide

Hoong-Kun Fun a,*,, Ching Kheng Quah a,§, B Narayana b, Prakash S Nayak b, B K Sarojini c
PMCID: PMC3247340  PMID: 22219958

Abstract

In the title compound, C18H14BrNO, the naphthalene ring system and the benzene ring form dihedral angles of 78.8 (2) and 19.7 (2)°, respectively, with the acetamide C—C(=O)—N plane. The naphthalene ring system forms a dihedral angle of 64.88 (19)° with the benzene ring. In the crystal, mol­ecules are linked via inter­molecular bifurcated (N,C)—H⋯O hydrogen bonds, generating an R 2 1(6) ring motif, forming chains along the b axis.

Related literature

For the structural similarity of N-substituted 2-aryl­acetamides to the lateral chain of natural benzyl­penicillin, see: Mijin & Marinkovic (2006); Mijin et al. (2008). For the coordination abilities of amides, see: Wu et al. (2008, 2010). For studies of amides in therapy, myocardial infarction and ischemic disease, see: Dorsch et al. (2002); Wang, Li & Li (2010); Wang, Beck et al. (2010). For related structures, see: Fun et al. (2010); Li & Wu (2010); Xiao et al. (2010); Praveen et al. (2011). For standard bond-length data, see: Allen et al. (1987). For the definition of graph-set notation, see: Bernstein et al. (1995).graphic file with name e-67-o2926-scheme1.jpg

Experimental

Crystal data

  • C18H14BrNO

  • M r = 340.21

  • Orthorhombic, Inline graphic

  • a = 12.6837 (11) Å

  • b = 9.4047 (11) Å

  • c = 25.641 (3) Å

  • V = 3058.6 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.69 mm−1

  • T = 296 K

  • 0.40 × 0.30 × 0.28 mm

Data collection

  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.415, T max = 0.523

  • 18691 measured reflections

  • 2999 independent reflections

  • 1864 reflections with I > 2σ(I)

  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051

  • wR(F 2) = 0.182

  • S = 1.02

  • 2999 reflections

  • 184 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.53 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811041110/is2786sup1.cif

e-67-o2926-sup1.cif (18.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811041110/is2786Isup2.hkl

e-67-o2926-Isup2.hkl (147.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811041110/is2786Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1i 0.80 2.09 2.879 (3) 167
C11—H11A⋯O1i 0.97 2.59 3.422 (4) 143

Symmetry code: (i) Inline graphic.

Acknowledgments

HKF and CKQ thank Universiti Sains Malaysia for the Research University Grant (No. 1001/PFIZIK/811160). BN thanks the UGC-New Delhi, Government of India, for financial assistance for the purchase of chemicals through a BSR one-time grant.

supplementary crystallographic information

Comment

N-Substituted 2-arylacetamides are very interesting compounds because of their structural similarity to the lateral chain of natural benzylpenicillin (Mijin & Marinkovic, 2006; Mijin et al., 2008). Amides are also used as ligands due to their excellent coordination abilities (Wu et al., 2008, 2010) and for the therapy of thromboembolic disorder and effective anticoagulants for myocardial infarction and ischemic disease (Dorsch et al., 2002; Wang, Li & Li, 2010; Wang, Beck et al., 2010). Crystal structures of some acetamide derivatives, viz., 2-(4-bromophenyl)-N-(2-methoxyphenyl)acetamide (Xiao et al., 2010), N-benzyl-2-(2-bromophenyl)-2-(2-nitrophenoxy) acetamide (Li & Wu, 2010) and N-(3-chloro-4-fluorophenyl)-2- (naphthalen-1-yl)acetamide (Praveen et al., 2011) have been reported. In view of the importance of amides, we report herein the crystal structure of the title compound.

The molecular structure is shown in Fig. 1. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to a related structure (Fun et al., 2010). The naphthalene ring system (C1–C10, maximum deviation of 0.022 (7) Å at atom C7) and the benzene ring (C13–C18) form dihedral angles of 78.8 (2) and 19.7 (2)°, respectively, with the acetamide moiety [O1/N1/C11/C12, maximum deviation of 0.014 (4) Å at atom C12]. The naphthalene ring system also forms dihedral angle of 64.88 (19)° with the benzene ring.

In the crystal packing (Fig. 2), molecules are linked via intermolecular bifurcated N1—H1N1···O1 and C11—H11A···O1 acceptor bonds (Table 1), generating an R21(6) ring motif, (Bernstein et al., 1995) to form one-dimensional chains along the [010] direction.

Experimental

Naphthalen-1-acetic acid (0.186g, 1 mmol) and 4-bromoaniline (0.172g, 1 mmol) were dissolved in dichloromethane (20 ml). The mixture was stirred in presence of triethylamine at 273 K for about 3 h. The contents were poured into 100 ml of ice-cold aqueous hydrochloric acid with stirring, and was extracted thrice with dichloromethane. Organic layer was washed with saturated NaHCO3 solution and brine solution, dried and concentrated under reduced pressure to give the title compound. Single crystals were grown from toluene and acetone mixture by the slow evaporation method (m.p.: 476-478 K).

Refinement

Atom H1N1 was located from the difference Fourier map and refined using a riding model, with N1—H1N1 = 0.80 Å, and with Uiso(H) = 1.2Ueq(N). The remaining H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 or 0.97 Å and Uiso(H) = 1.2 Ueq(C). The same Uij parameters were used for atom pair C4/C5.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 20% probability displacement ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

The crystal structure of the title compound, viewed along the c axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.

Crystal data

C18H14BrNO F(000) = 1376
Mr = 340.21 Dx = 1.478 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 3596 reflections
a = 12.6837 (11) Å θ = 2.3–21.0°
b = 9.4047 (11) Å µ = 2.69 mm1
c = 25.641 (3) Å T = 296 K
V = 3058.6 (6) Å3 Block, colourless
Z = 8 0.40 × 0.30 × 0.28 mm

Data collection

Bruker SMART APEXII DUO CCD area-detector diffractometer 2999 independent reflections
Radiation source: fine-focus sealed tube 1864 reflections with I > 2σ(I)
graphite Rint = 0.046
φ and ω scans θmax = 26.0°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −15→15
Tmin = 0.415, Tmax = 0.523 k = −11→11
18691 measured reflections l = −29→31

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.182 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.081P)2 + 1.7994P] where P = (Fo2 + 2Fc2)/3
2999 reflections (Δ/σ)max = 0.001
184 parameters Δρmax = 0.37 e Å3
0 restraints Δρmin = −0.53 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.68647 (5) 0.59626 (9) 0.26162 (3) 0.1354 (4)
O1 0.2893 (2) 0.3465 (2) 0.09635 (13) 0.0798 (8)
N1 0.3185 (2) 0.5799 (3) 0.11054 (13) 0.0606 (7)
H1N1 0.2943 0.6557 0.1026 0.073*
C1 0.0129 (3) 0.4200 (4) 0.07382 (18) 0.0776 (11)
C2 0.0061 (4) 0.5306 (5) 0.11333 (19) 0.0917 (13)
H2A 0.0608 0.5956 0.1175 0.110*
C3 −0.0795 (5) 0.5381 (7) 0.1437 (2) 0.1183 (18)
H3A −0.0837 0.6095 0.1687 0.142*
C4 −0.1616 (5) 0.4428 (8) 0.1390 (3) 0.1343 (16)
H4A −0.2200 0.4522 0.1606 0.161*
C5 −0.1592 (5) 0.3370 (9) 0.1039 (3) 0.1343 (16)
H5A −0.2151 0.2734 0.1015 0.161*
C6 −0.0718 (3) 0.3231 (5) 0.07082 (19) 0.0889 (13)
C7 −0.0643 (5) 0.2134 (6) 0.0329 (3) 0.1152 (19)
H7A −0.1179 0.1463 0.0306 0.138*
C8 0.0194 (6) 0.2039 (6) −0.0004 (2) 0.1104 (17)
H8A 0.0219 0.1337 −0.0260 0.133*
C9 0.1015 (4) 0.3026 (4) 0.00486 (18) 0.0880 (12)
H9A 0.1595 0.2944 −0.0171 0.106*
C10 0.1007 (3) 0.4098 (4) 0.04051 (16) 0.0719 (10)
C11 0.1911 (3) 0.5111 (4) 0.04556 (17) 0.0749 (10)
H11A 0.1636 0.6049 0.0534 0.090*
H11B 0.2272 0.5167 0.0123 0.090*
C12 0.2695 (3) 0.4708 (3) 0.08686 (15) 0.0604 (8)
C13 0.4021 (3) 0.5751 (3) 0.14681 (13) 0.0573 (8)
C14 0.4212 (3) 0.6974 (4) 0.17541 (16) 0.0740 (10)
H14A 0.3773 0.7759 0.1716 0.089*
C15 0.5052 (4) 0.7029 (5) 0.20955 (17) 0.0906 (13)
H15A 0.5180 0.7851 0.2287 0.109*
C16 0.5701 (3) 0.5868 (5) 0.21535 (18) 0.0838 (12)
C17 0.5511 (3) 0.4651 (5) 0.18744 (18) 0.0819 (11)
H17A 0.5950 0.3866 0.1915 0.098*
C18 0.4673 (3) 0.4587 (4) 0.15334 (16) 0.0707 (10)
H18A 0.4545 0.3758 0.1346 0.085*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.1139 (5) 0.1942 (8) 0.0981 (5) −0.0291 (4) −0.0306 (3) −0.0162 (4)
O1 0.0801 (16) 0.0393 (12) 0.120 (2) −0.0026 (10) −0.0274 (15) 0.0069 (13)
N1 0.0672 (16) 0.0380 (12) 0.077 (2) −0.0013 (11) 0.0057 (14) 0.0018 (13)
C1 0.069 (2) 0.082 (3) 0.082 (3) 0.0096 (19) −0.017 (2) 0.011 (2)
C2 0.089 (3) 0.090 (3) 0.096 (3) 0.015 (2) −0.002 (3) −0.005 (3)
C3 0.112 (4) 0.123 (4) 0.120 (4) 0.025 (3) 0.013 (3) −0.014 (4)
C4 0.087 (2) 0.174 (5) 0.143 (4) −0.001 (3) −0.005 (3) 0.002 (3)
C5 0.087 (2) 0.174 (5) 0.143 (4) −0.001 (3) −0.005 (3) 0.002 (3)
C6 0.079 (3) 0.088 (3) 0.100 (3) −0.006 (2) −0.035 (2) 0.013 (3)
C7 0.110 (4) 0.099 (4) 0.137 (5) −0.015 (3) −0.061 (4) 0.005 (4)
C8 0.136 (5) 0.088 (3) 0.107 (4) 0.014 (3) −0.048 (4) −0.014 (3)
C9 0.113 (3) 0.070 (2) 0.081 (3) 0.011 (2) −0.027 (2) −0.005 (2)
C10 0.082 (2) 0.064 (2) 0.070 (2) 0.0090 (18) −0.018 (2) 0.013 (2)
C11 0.085 (2) 0.057 (2) 0.082 (3) −0.0006 (17) −0.005 (2) 0.011 (2)
C12 0.0600 (18) 0.0450 (17) 0.076 (2) −0.0011 (14) 0.0071 (16) 0.0031 (17)
C13 0.0647 (18) 0.0478 (16) 0.059 (2) −0.0103 (14) 0.0104 (16) 0.0009 (15)
C14 0.090 (3) 0.061 (2) 0.071 (2) −0.0100 (18) 0.014 (2) −0.0094 (19)
C15 0.108 (3) 0.091 (3) 0.073 (3) −0.027 (3) 0.013 (2) −0.024 (2)
C16 0.078 (3) 0.106 (3) 0.068 (3) −0.019 (2) 0.002 (2) −0.003 (2)
C17 0.072 (2) 0.081 (2) 0.093 (3) −0.0039 (19) −0.003 (2) 0.003 (2)
C18 0.072 (2) 0.0562 (18) 0.084 (3) −0.0029 (16) −0.0043 (19) −0.0047 (19)

Geometric parameters (Å, °)

Br1—C16 1.896 (4) C8—C9 1.402 (8)
O1—C12 1.220 (4) C8—H8A 0.9300
N1—C12 1.345 (4) C9—C10 1.361 (6)
N1—C13 1.410 (5) C9—H9A 0.9300
N1—H1N1 0.8031 C10—C11 1.496 (5)
C1—C10 1.407 (6) C11—C12 1.501 (5)
C1—C6 1.411 (6) C11—H11A 0.9700
C1—C2 1.455 (6) C11—H11B 0.9700
C2—C3 1.337 (7) C13—C18 1.382 (5)
C2—H2A 0.9300 C13—C14 1.385 (5)
C3—C4 1.379 (8) C14—C15 1.380 (6)
C3—H3A 0.9300 C14—H14A 0.9300
C4—C5 1.342 (10) C15—C16 1.374 (7)
C4—H4A 0.9300 C15—H15A 0.9300
C5—C6 1.401 (8) C16—C17 1.371 (6)
C5—H5A 0.9300 C17—C18 1.378 (6)
C6—C7 1.421 (8) C17—H17A 0.9300
C7—C8 1.366 (8) C18—H18A 0.9300
C7—H7A 0.9300
C12—N1—C13 128.4 (3) C9—C10—C1 117.7 (4)
C12—N1—H1N1 112.7 C9—C10—C11 121.6 (4)
C13—N1—H1N1 119.0 C1—C10—C11 120.7 (4)
C10—C1—C6 121.7 (4) C10—C11—C12 114.1 (3)
C10—C1—C2 121.2 (4) C10—C11—H11A 108.7
C6—C1—C2 117.1 (4) C12—C11—H11A 108.7
C3—C2—C1 119.4 (5) C10—C11—H11B 108.7
C3—C2—H2A 120.3 C12—C11—H11B 108.7
C1—C2—H2A 120.3 H11A—C11—H11B 107.6
C2—C3—C4 121.9 (6) O1—C12—N1 123.1 (3)
C2—C3—H3A 119.1 O1—C12—C11 121.3 (3)
C4—C3—H3A 119.1 N1—C12—C11 115.6 (3)
C5—C4—C3 121.5 (7) C18—C13—C14 119.2 (4)
C5—C4—H4A 119.2 C18—C13—N1 123.7 (3)
C3—C4—H4A 119.2 C14—C13—N1 117.0 (3)
C4—C5—C6 119.5 (6) C15—C14—C13 120.1 (4)
C4—C5—H5A 120.2 C15—C14—H14A 119.9
C6—C5—H5A 120.2 C13—C14—H14A 119.9
C5—C6—C1 120.6 (5) C16—C15—C14 120.1 (4)
C5—C6—C7 122.4 (5) C16—C15—H15A 120.0
C1—C6—C7 117.1 (5) C14—C15—H15A 120.0
C8—C7—C6 121.9 (5) C17—C16—C15 120.1 (4)
C8—C7—H7A 119.1 C17—C16—Br1 120.1 (4)
C6—C7—H7A 119.1 C15—C16—Br1 119.8 (3)
C7—C8—C9 118.3 (5) C16—C17—C18 120.2 (4)
C7—C8—H8A 120.9 C16—C17—H17A 119.9
C9—C8—H8A 120.9 C18—C17—H17A 119.9
C10—C9—C8 123.4 (6) C17—C18—C13 120.3 (4)
C10—C9—H9A 118.3 C17—C18—H18A 119.9
C8—C9—H9A 118.3 C13—C18—H18A 119.9
C10—C1—C2—C3 178.9 (4) C2—C1—C10—C11 1.3 (5)
C6—C1—C2—C3 −1.7 (6) C9—C10—C11—C12 −95.0 (4)
C1—C2—C3—C4 0.6 (8) C1—C10—C11—C12 83.0 (4)
C2—C3—C4—C5 0.6 (11) C13—N1—C12—O1 3.8 (6)
C3—C4—C5—C6 −0.5 (11) C13—N1—C12—C11 −173.5 (3)
C4—C5—C6—C1 −0.6 (9) C10—C11—C12—O1 34.1 (5)
C4—C5—C6—C7 180.0 (6) C10—C11—C12—N1 −148.6 (3)
C10—C1—C6—C5 −178.9 (5) C12—N1—C13—C18 18.9 (5)
C2—C1—C6—C5 1.7 (6) C12—N1—C13—C14 −164.0 (3)
C10—C1—C6—C7 0.5 (6) C18—C13—C14—C15 0.7 (5)
C2—C1—C6—C7 −178.9 (4) N1—C13—C14—C15 −176.5 (3)
C5—C6—C7—C8 177.6 (5) C13—C14—C15—C16 −0.1 (6)
C1—C6—C7—C8 −1.9 (7) C14—C15—C16—C17 −0.3 (6)
C6—C7—C8—C9 2.5 (8) C14—C15—C16—Br1 179.1 (3)
C7—C8—C9—C10 −1.9 (7) C15—C16—C17—C18 0.2 (7)
C8—C9—C10—C1 0.6 (6) Br1—C16—C17—C18 −179.2 (3)
C8—C9—C10—C11 178.7 (4) C16—C17—C18—C13 0.4 (6)
C6—C1—C10—C9 0.0 (5) C14—C13—C18—C17 −0.8 (6)
C2—C1—C10—C9 179.4 (4) N1—C13—C18—C17 176.2 (4)
C6—C1—C10—C11 −178.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N1···O1i 0.80 2.09 2.879 (3) 167
C11—H11A···O1i 0.97 2.59 3.422 (4) 143

Symmetry codes: (i) −x+1/2, y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2786).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Dorsch, D., Mederski, W., Tsaklakidis, C., Cezanne, B., Gleitz, J. & Barnes, C. (2002). PCT Int. Appl. WO 2002057236.
  5. Fun, H.-K., Quah, C. K., Vijesh, A. M., Malladi, S. & Isloor, A. M. (2010). Acta Cryst. E66, o29–o30. [DOI] [PMC free article] [PubMed]
  6. Li, H. M. & Wu, J.-L. (2010). Acta Cryst. E66, o1274. [DOI] [PMC free article] [PubMed]
  7. Mijin, D. & Marinkovic, A. (2006). Synth. Commun. 36, 193–198.
  8. Mijin, D. Z., Prascevic, M. & Petrovic, S. D. (2008). J. Serb. Chem. Soc. 73, 945–950.
  9. Praveen, A. S., Jasinski, J. P., Golen, J. A., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o1826. [DOI] [PMC free article] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Wang, S., Beck, R., Burd, A., Blench, T., Marlin, F., Ayele, T., Buxton, S., Dagostin, C., Malic, M., Joshi, R., Barry, J., Sajad, M., Cheung, C., Shaikh, S., Chahwala, S., Chander, C., Baumgartner, C., Holthoff, H.-P., Murray, E., Blackney, M. & Giddings, A. (2010). J. Med. Chem. 53, 1473–1482. [DOI] [PubMed]
  13. Wang, Y., Li, Y.-W. & Li, X.-X. (2010). Acta Cryst. E66, o1977.
  14. Wu, W.-N., Cheng, F.-X., Yan, L. & Tang, N. (2008). J. Coord. Chem. 61, 2207–2215.
  15. Wu, W.-N., Wang, Y., Zhang, A.-Y., Zhao, R.-Q. & Wang, Q.-F. (2010). Acta Cryst. E66, m288. [DOI] [PMC free article] [PubMed]
  16. Xiao, Z.-P., Ouyang, Y.-Z., Qin, S.-D., Xie, T. & Yang, J. (2010). Acta Cryst. E66, o67. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811041110/is2786sup1.cif

e-67-o2926-sup1.cif (18.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811041110/is2786Isup2.hkl

e-67-o2926-Isup2.hkl (147.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811041110/is2786Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES