Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 12;67(Pt 11):o2929. doi: 10.1107/S1600536811041316

(E)-3-(1-Phenyl­ethyl­idene)indolin-2-one

Qi Wang a, Yue-Jun Zhang a, Mao-Sen Yuan a,*, Jun-Ru Wang a
PMCID: PMC3247342  PMID: 22219960

Abstract

In the title mol­ecule, C16H13NO, the indoline-2-one ring system is nearly planar [maximum atomic deviation = 0.082 (2) Å] and is oriented at a dihedral angle of 66.60 (12)° with respect to the phenyl ring. In the crystal, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into supra­molecular dimers.

Related literature

For applications of indoline-2-one and its derivatives as precursors in the synthesis of pharmaceuticals, see: Stephen et al. (1996).graphic file with name e-67-o2929-scheme1.jpg

Experimental

Crystal data

  • C16H13NO

  • M r = 235.27

  • Monoclinic, Inline graphic

  • a = 22.215 (3) Å

  • b = 8.6259 (13) Å

  • c = 15.062 (2) Å

  • β = 122.097 (2)°

  • V = 2445.1 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.30 × 0.20 × 0.20 mm

Data collection

  • Bruker SMART 1000 CCD area-detector diffractometer

  • 12693 measured reflections

  • 2168 independent reflections

  • 1599 reflections with I > 2σ(I)

  • R int = 0.043

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.125

  • S = 0.91

  • 2168 reflections

  • 165 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811041316/xu5343sup1.cif

e-67-o2929-sup1.cif (15.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811041316/xu5343Isup2.hkl

e-67-o2929-Isup2.hkl (106.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811041316/xu5343Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.21 2.9002 (19) 137

Symmetry code: (i) Inline graphic.

Acknowledgments

Financial support from the PhD Programs Foundation of the Ministry of Education of China (No. 20090204120033) is gratefully acknowledged.

supplementary crystallographic information

Comment

Indoline-2-one and its derivatives have been used as precursors to synthesis pharmaceuticals (Stephen et al., 1996). Rooting from its perfect conformation, indoline-2-one were tried to built electro-optic compounds recently. In the course of synthesis, we obtained the intermediate compound C16H13NO, (I), and the synthesis and structure are reported here.

In the title molecule, the indole system lies approximately in a plane and the maximum displacement from the least-square plane defined by all the 9 atoms of the indole framework is 0.082 (2) Å for C2 atom. The interplanar angle between the benzene plane and that of the indole moiety is 66.60 (12)°.

The title compound has three substituent ring systems, an indoline-2-one ring and two benzene rings which are arranged in a propeller-like fashion around the central atom C9 (Fig. 1). The interplanar dihedral angle between the two benzene rings defined by C10–C15 and C16–C21 is 73.41 (14)°. The interplanar angles between these benzene planes and that of the indoline moiety are 76.61 (12)° and 67.68 (12)°, respectively.

In the crystal structure there is an intermolecular N—H···O hydrogen-bonding interaction (Table 1) linking the molecules into dimers (Fig. 2).

Experimental

Indolin-2-one (0.50 g, 3.76 mmol) was dissolved in THF (20 mL) and KOH (0.80 g, 14.3 mmol) was slowly added. After heating the stirred mixture at reflux temperature for 30 min, a solution of acetophenone (1.00 g, 8.33 mmol) in THF was slowly added and the refluxing continued for 2 h. The mixture was then cooled to 333 K and poured into water (200 mL) and was extracted with chloroform and dried over Na2SO4. After removing the solvent, the crude product was purified by column chromatography on silica gel, affording the title compound (yield: 0.15 g, 17%). The compound was then dissolved in THF, and yellow crystals were formed on slow evaporation at room temperature over one week.

Refinement

All H atoms were placed in geometrically calculated positions with C—H = 0.93 (aromatic), 0.96 (methyl) and N—H = 0.86 Å, and refined using a riding model with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C,N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

The molecular packing of (I) viewed along the c axis, with hydrogen bonds shown as dashed lines.

Crystal data

C16H13NO F(000) = 992
Mr = 235.27 Dx = 1.278 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 1702 reflections
a = 22.215 (3) Å θ = 2.8–2.8°
b = 8.6259 (13) Å µ = 0.08 mm1
c = 15.062 (2) Å T = 296 K
β = 122.097 (2)° Block, colorless
V = 2445.1 (6) Å3 0.30 × 0.20 × 0.20 mm
Z = 8

Data collection

Bruker SMART 1000 CCD area-detector diffractometer 1599 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.043
graphite θmax = 25.1°, θmin = 2.2°
φ and ω scans h = −26→26
12693 measured reflections k = −10→10
2168 independent reflections l = −17→17

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040 H-atom parameters constrained
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.0724P)2 + 1.3094P] where P = (Fo2 + 2Fc2)/3
S = 0.91 (Δ/σ)max < 0.001
2168 reflections Δρmax = 0.18 e Å3
165 parameters Δρmin = −0.18 e Å3
0 restraints Extinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0027 (8)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 1.03263 (7) 0.61802 (17) 0.39044 (11) 0.0561 (4)
N1 0.91715 (8) 0.61084 (19) 0.25220 (12) 0.0472 (4)
H1 0.9243 0.5627 0.2086 0.057*
C2 0.93295 (9) 0.7148 (2) 0.40348 (14) 0.0390 (4)
C3 0.85779 (9) 0.7304 (2) 0.31810 (14) 0.0403 (4)
C8 0.85065 (9) 0.6645 (2) 0.22834 (14) 0.0426 (5)
C10 0.92466 (9) 0.8083 (2) 0.55170 (13) 0.0414 (4)
C1 0.96899 (10) 0.6443 (2) 0.35275 (15) 0.0429 (4)
C4 0.79902 (9) 0.8025 (3) 0.30961 (15) 0.0515 (5)
H4 0.8025 0.8502 0.3675 0.062*
C9 0.96527 (9) 0.7516 (2) 0.50547 (14) 0.0411 (4)
C11 0.87633 (10) 0.7128 (2) 0.55719 (16) 0.0510 (5)
H11 0.8683 0.6128 0.5301 0.061*
C7 0.78716 (10) 0.6622 (3) 0.13293 (15) 0.0546 (5)
H7 0.7836 0.6156 0.0746 0.066*
C16 1.04401 (10) 0.7398 (3) 0.58193 (16) 0.0580 (6)
H16A 1.0643 0.6716 0.5543 0.087*
H16B 1.0530 0.6995 0.6473 0.087*
H16C 1.0651 0.8407 0.5931 0.087*
C5 0.73531 (10) 0.8022 (3) 0.21390 (17) 0.0608 (6)
H5 0.6959 0.8505 0.2079 0.073*
C15 0.93593 (12) 0.9552 (3) 0.59383 (17) 0.0605 (6)
H15 0.9691 1.0197 0.5929 0.073*
C12 0.84032 (12) 0.7657 (3) 0.60250 (17) 0.0608 (6)
H12 0.8085 0.7007 0.6066 0.073*
C13 0.85102 (13) 0.9134 (3) 0.64162 (18) 0.0689 (7)
H13 0.8260 0.9493 0.6710 0.083*
C6 0.72902 (11) 0.7317 (3) 0.12704 (17) 0.0618 (6)
H6 0.6853 0.7309 0.0640 0.074*
C14 0.89866 (14) 1.0071 (3) 0.6371 (2) 0.0746 (7)
H14 0.9060 1.1074 0.6636 0.089*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0469 (8) 0.0770 (10) 0.0553 (8) 0.0138 (7) 0.0345 (7) 0.0087 (7)
N1 0.0536 (10) 0.0554 (10) 0.0441 (9) 0.0045 (7) 0.0338 (8) −0.0013 (7)
C2 0.0378 (9) 0.0435 (10) 0.0429 (10) 0.0001 (7) 0.0263 (8) 0.0033 (8)
C3 0.0385 (9) 0.0476 (11) 0.0402 (10) −0.0018 (8) 0.0245 (8) 0.0020 (8)
C8 0.0464 (10) 0.0470 (11) 0.0430 (10) −0.0040 (8) 0.0295 (9) 0.0011 (8)
C10 0.0411 (10) 0.0516 (11) 0.0322 (9) 0.0025 (8) 0.0199 (8) 0.0014 (8)
C1 0.0464 (11) 0.0473 (11) 0.0446 (11) 0.0029 (8) 0.0306 (9) 0.0068 (8)
C4 0.0421 (11) 0.0717 (14) 0.0455 (11) 0.0022 (9) 0.0265 (9) −0.0023 (10)
C9 0.0404 (10) 0.0444 (10) 0.0420 (10) −0.0006 (8) 0.0243 (8) 0.0037 (8)
C11 0.0524 (11) 0.0547 (12) 0.0561 (12) −0.0002 (9) 0.0358 (10) −0.0005 (9)
C7 0.0544 (12) 0.0707 (14) 0.0402 (11) −0.0096 (10) 0.0261 (10) −0.0037 (9)
C16 0.0412 (11) 0.0827 (15) 0.0466 (12) 0.0021 (10) 0.0210 (10) 0.0004 (10)
C5 0.0381 (11) 0.0907 (17) 0.0541 (13) 0.0038 (11) 0.0248 (10) 0.0030 (12)
C15 0.0648 (14) 0.0586 (13) 0.0652 (14) −0.0076 (11) 0.0394 (12) −0.0095 (11)
C12 0.0603 (13) 0.0780 (16) 0.0607 (14) 0.0080 (11) 0.0433 (12) 0.0105 (11)
C13 0.0740 (15) 0.0903 (18) 0.0589 (14) 0.0238 (14) 0.0464 (13) 0.0027 (13)
C6 0.0432 (11) 0.0912 (17) 0.0458 (12) −0.0070 (11) 0.0201 (10) 0.0013 (11)
C14 0.0884 (18) 0.0674 (15) 0.0819 (18) 0.0027 (13) 0.0547 (16) −0.0203 (13)

Geometric parameters (Å, °)

O1—C1 1.233 (2) C15—C14 1.373 (3)
N1—C1 1.360 (2) C12—C13 1.370 (3)
N1—C8 1.401 (2) C13—C14 1.362 (3)
C2—C9 1.343 (3) N1—H1 0.8600
C2—C3 1.476 (2) C4—H4 0.9300
C2—C1 1.498 (2) C5—H5 0.9300
C3—C4 1.389 (2) C6—H6 0.9300
C3—C8 1.396 (3) C7—H7 0.9300
C8—C7 1.379 (3) C11—H11 0.9300
C10—C15 1.379 (3) C12—H12 0.9300
C10—C11 1.390 (3) C13—H13 0.9300
C10—C9 1.485 (3) C14—H14 0.9300
C4—C5 1.383 (3) C15—H15 0.9300
C9—C16 1.502 (3) C16—H16A 0.9600
C11—C12 1.376 (3) C16—H16B 0.9600
C7—C6 1.383 (3) C16—H16C 0.9600
C5—C6 1.381 (3)
C1—N1—C8 111.66 (15) C13—C14—C15 120.7 (2)
C9—C2—C3 130.16 (16) C1—N1—H1 123.8
C9—C2—C1 124.99 (16) C8—N1—H1 123.8
C3—C2—C1 104.85 (15) C3—C4—H4 120.0
C4—C3—C8 118.39 (17) C5—C4—H4 120.0
C4—C3—C2 133.92 (17) C4—C5—H5 119.6
C8—C3—C2 107.50 (15) C6—C5—H5 119.6
C7—C8—C3 122.84 (17) C5—C6—H6 119.6
C7—C8—N1 128.17 (17) C7—C6—H6 119.6
C3—C8—N1 108.93 (15) C6—C7—H7 120.5
C15—C10—C11 118.31 (18) C8—C7—H7 120.5
C15—C10—C9 120.74 (17) C10—C11—H11 119.6
C11—C10—C9 120.91 (17) C12—C11—H11 119.6
O1—C1—N1 123.98 (17) C11—C12—H12 119.6
O1—C1—C2 129.26 (17) C13—C12—H12 120.2
N1—C1—C2 106.76 (15) C12—C13—H13 120.2
C5—C4—C3 119.10 (18) C14—C13—H13 120.2
C2—C9—C10 121.69 (16) C13—C14—H14 120.2
C2—C9—C16 123.92 (17) C15—C14—H14 120.2
C10—C9—C16 114.40 (16) C10—C15—H15 120.2
C12—C11—C10 120.2 (2) C14—C15—H15 120.2
C8—C7—C6 117.63 (19) C9—C16—H16A 109.4
C6—C5—C4 121.4 (2) C9—C16—H16B 109.4
C14—C15—C10 120.7 (2) C9—C16—H16C 109.4
C13—C12—C11 120.5 (2) H16A—C16—H16B 109.0
C14—C13—C12 119.5 (2) H16A—C16—H16C 109.0
C5—C6—C7 120.6 (2) H16B—C16—H16C 109.0

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.86 2.21 2.9002 (19) 137

Symmetry codes: (i) −x+2, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5343).

References

  1. Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  3. Stephen, C. T., Gary, H. G. & Robert, R. H. (1996). J. Pham. Biomed. Anal. 14, 825–830.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811041316/xu5343sup1.cif

e-67-o2929-sup1.cif (15.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811041316/xu5343Isup2.hkl

e-67-o2929-Isup2.hkl (106.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811041316/xu5343Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES