Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 12;67(Pt 11):o2933. doi: 10.1107/S1600536811041559

4-Aza-1-azoniabicyclo­[2.2.2]octa­ne–2-amino­benzoate–2-amino­benzoic acid (1/1/1)

Hadi D Arman a, Trupta Kaulgud a, Edward R T Tiekink b,*
PMCID: PMC3247346  PMID: 22219964

Abstract

A 4-aza-1-azoniabicyclo­[2.2.2]octane cation, a 2-amino­benzoate anion and a neutral 2-amino­benzoic acid mol­ecule comprise the asymmetric unit of the title compound, C6H13N2 +·C7H6NO2 ·C7H7NO2. An intra­molecular N—H⋯O hydrogen bond occurs in the anion and in the neutral 2-amino­benzoic acid mol­ecule. The cation provides a charge-assisted N—H⋯O hydrogen bond to the anion, and the 2-amino­benzoic acid mol­ecule forms an O—H⋯N hydrogen bond to the unprotonated amino N atom in the cation. In this way, a three-component aggregate is formed. These are connected into a three-dimensional network by amino–carboxyl­ate N—H⋯O hydrogen bonds. N—H⋯N hydrogen bonds are also observed.

Related literature

For related studies on co-crystal formation, see: Arman et al. (2010); Arman & Tiekink (2010); Wardell & Tiekink (2011). For examples of multi-component crystals containing the 2-amino­benzoate anion, see: Lynch et al. (1998); Chen & Peng (2011). For a description of the Cambridge Structural Database, see: Allen (2002).graphic file with name e-67-o2933-scheme1.jpg

Experimental

Crystal data

  • C6H13N2 +·C7H6NO2 ·C7H7NO2

  • M r = 386.45

  • Monoclinic, Inline graphic

  • a = 9.285 (3) Å

  • b = 16.843 (5) Å

  • c = 12.660 (4) Å

  • β = 102.127 (6)°

  • V = 1935.7 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 98 K

  • 0.34 × 0.17 × 0.07 mm

Data collection

  • Rigaku AFC12/SATURN724 diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.731, T max = 1.000

  • 16911 measured reflections

  • 4440 independent reflections

  • 3929 reflections with I > 2σ(I)

  • R int = 0.054

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056

  • wR(F 2) = 0.128

  • S = 1.13

  • 4440 reflections

  • 268 parameters

  • 7 restraints

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811041559/hb6440sup1.cif

e-67-o2933-sup1.cif (21.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811041559/hb6440Isup2.hkl

e-67-o2933-Isup2.hkl (217.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811041559/hb6440Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯N3 0.84 1.77 2.597 (2) 168
N4—H5n⋯O3 0.93 1.64 2.546 (2) 166
N1—H2n⋯O2 0.88 2.03 2.725 (2) 135
N2—H3n⋯O3 0.88 2.04 2.696 (2) 131
N1—H1n⋯O4i 0.88 2.08 2.941 (2) 165
N2—H4n⋯N1ii 0.88 2.38 3.256 (2) 171

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The Ministry of Higher Education, Malaysia, is thanked for the award of a research grant in crystal engineering (RG125/10AFR).

supplementary crystallographic information

Comment

As a part of on-going studies into co-crystallization experiments of carboxylic acids with N-containing molecules (Arman et al. 2010; Arman & Tiekink, 2010; Wardell & Tiekink, 2011), the 1:2 co-crystallization of 1,4-diazabicyclo[2.2.2]octane (DABCO) and 2-aminobenzoic was investigated, leading to the isolation of (I).

The crystallographic asymmetric unit of (I) comprises a 4-aza-1-azoniabicyclo(2.2.2)octane cation, Fig. 1, a 2-aminobenzoate anion, Fig. 2, and a neutral 2-aminobenzoic acid molecule, Fig. 3. While there are many examples of 4-aza-1-azoniabicyclo(2.2.2)octane cations and neutral 2-aminobenzoic acid molecules in the crystallographic literature (Allen, 2002), examples of 2-aminobenzoate anions are comparatively rare in all-organic molecules (Lynch et al., 1998; Chen & Peng, 2011). The ions and neutral benzoic acid derivative associate into a three-molecule aggregate via N+—H···O and O—H···N hydrogen bonds formed by and to the cation, Fig. 4 and Table 1; intramolecular N—H···O hydrogen bonds are also noted in the benzoate and benzoic acid species, Table 1.

The three component aggregates are connected into the three-dimensional architecture by hydrogen bonds involving the amino-H atoms not participating in intramolecular N—H···O interactions, Fig. 5 and Table 1.

Experimental

Colourless crystals of (I) were isolated from the 1:2 co-crystallization of 1,4-diazabicyclo[2.2.2]octane (Sigma-Aldrich, 0.089 mmol) and anthranilic acid (Sigma-Aldrich, 0.19 mmol) in chloroform solution (6 ml); M.pt. 427–430 K.

Refinement

The C-bound H-atoms were placed in calculated positions (C—H 0.95–0.99 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2Ueq(C). The O– and N-bound H-atoms were located in a difference Fourier map and were refined with distance restraints of O—H 0.840±0.001 Å and N—H = 0.088±0.001 Å, respectively, and with Uiso(H) = 1.5Ueq(O, N).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the 4-aza-1-azoniabicyclo(2.2.2)octane cation in (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Fig. 2.

Fig. 2.

Molecular structure of the 2-aminobenzoate anion in (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Fig. 3.

Fig. 3.

Molecular structure of the neutral 2-aminobenzoic acid molecule in (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Fig. 4.

Fig. 4.

Three component aggregate in (I) held together by O—H···N and N—H···O hydrogen bonds shown as orange and blue dashed lines, respectively.

Fig. 5.

Fig. 5.

View in projection down the a axis of the unit-cell contents of (I). The O—H···N and N—H···O hydrogen bonds are shown as orange and blue dashed lines, respectively.

Crystal data

C6H13N2+·C7H6NO2·C7H7NO2 F(000) = 824
Mr = 386.45 Dx = 1.326 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 8162 reflections
a = 9.285 (3) Å θ = 2.0–40.6°
b = 16.843 (5) Å µ = 0.09 mm1
c = 12.660 (4) Å T = 98 K
β = 102.127 (6)° Block, colourless
V = 1935.7 (10) Å3 0.34 × 0.17 × 0.07 mm
Z = 4

Data collection

Rigaku AFC12K/SATURN724 diffractometer 4440 independent reflections
Radiation source: fine-focus sealed tube 3929 reflections with I > 2σ(I)
graphite Rint = 0.054
ω scans θmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) h = −12→12
Tmin = 0.731, Tmax = 1.000 k = −19→21
16911 measured reflections l = −15→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128 H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0473P)2 + 0.9109P] where P = (Fo2 + 2Fc2)/3
4440 reflections (Δ/σ)max < 0.001
268 parameters Δρmax = 0.30 e Å3
7 restraints Δρmin = −0.23 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.73506 (15) 0.46965 (8) 1.01396 (10) 0.0286 (3)
H1o 0.7433 0.4752 0.9495 0.043*
O2 0.63182 (15) 0.35565 (8) 0.94734 (10) 0.0280 (3)
O3 0.87552 (13) 0.60731 (8) 0.46906 (9) 0.0255 (3)
O4 0.63909 (13) 0.62403 (7) 0.38987 (10) 0.0245 (3)
N1 0.58477 (16) 0.24385 (8) 1.09196 (12) 0.0225 (3)
H1n 0.5262 0.2075 1.1100 0.034*
H2n 0.5710 0.2596 1.0243 0.034*
N2 1.07213 (17) 0.69313 (11) 0.38788 (13) 0.0320 (4)
H3n 1.0547 0.6697 0.4460 0.048*
H4n 1.1631 0.7060 0.3850 0.048*
N3 0.76627 (15) 0.50739 (8) 0.82113 (11) 0.0203 (3)
N4 0.79912 (15) 0.55587 (8) 0.63832 (11) 0.0207 (3)
H5n 0.8114 0.5735 0.5712 0.025*
C1 0.61784 (17) 0.30546 (9) 1.16546 (13) 0.0184 (3)
C2 0.66288 (17) 0.38151 (9) 1.13704 (12) 0.0175 (3)
C3 0.69563 (17) 0.44053 (10) 1.21593 (13) 0.0200 (3)
H3 0.7229 0.4918 1.1959 0.024*
C4 0.68936 (19) 0.42613 (11) 1.32282 (13) 0.0232 (3)
H4 0.7110 0.4671 1.3754 0.028*
C5 0.65063 (18) 0.35033 (10) 1.35151 (13) 0.0228 (3)
H5 0.6493 0.3392 1.4249 0.027*
C6 0.61417 (17) 0.29115 (10) 1.27466 (13) 0.0209 (3)
H6 0.5863 0.2402 1.2957 0.025*
C7 0.67418 (17) 0.40032 (10) 1.02372 (13) 0.0192 (3)
C8 0.96688 (18) 0.68766 (10) 0.29348 (13) 0.0211 (3)
C9 0.82171 (17) 0.66015 (9) 0.29093 (13) 0.0185 (3)
C10 0.72053 (18) 0.65777 (10) 0.19229 (13) 0.0211 (3)
H10 0.6227 0.6407 0.1912 0.025*
C11 0.7582 (2) 0.67941 (10) 0.09614 (14) 0.0253 (4)
H11 0.6883 0.6759 0.0298 0.030*
C12 0.9008 (2) 0.70645 (10) 0.09858 (14) 0.0259 (4)
H12 0.9283 0.7215 0.0333 0.031*
C13 1.00247 (19) 0.71146 (10) 0.19520 (14) 0.0243 (4)
H13 1.0983 0.7313 0.1955 0.029*
C14 0.77248 (18) 0.62962 (9) 0.38957 (13) 0.0190 (3)
C15 0.92485 (19) 0.50551 (11) 0.81698 (14) 0.0254 (4)
H15A 0.9641 0.4512 0.8332 0.031*
H15B 0.9806 0.5420 0.8721 0.031*
C16 0.94441 (19) 0.53077 (12) 0.70394 (15) 0.0289 (4)
H16A 1.0154 0.5753 0.7103 0.035*
H16B 0.9837 0.4858 0.6682 0.035*
C17 0.71221 (19) 0.58987 (10) 0.80251 (14) 0.0241 (4)
H17A 0.7639 0.6242 0.8620 0.029*
H17B 0.6055 0.5916 0.8022 0.029*
C18 0.7387 (2) 0.62134 (10) 0.69428 (14) 0.0262 (4)
H18A 0.6450 0.6406 0.6491 0.031*
H18B 0.8091 0.6662 0.7070 0.031*
C19 0.6829 (2) 0.45573 (11) 0.73500 (13) 0.0255 (4)
H19A 0.5780 0.4541 0.7403 0.031*
H19B 0.7224 0.4010 0.7443 0.031*
C20 0.6952 (2) 0.48755 (11) 0.62315 (14) 0.0294 (4)
H20A 0.7318 0.4452 0.5813 0.035*
H20B 0.5972 0.5048 0.5826 0.035*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0416 (7) 0.0283 (7) 0.0170 (6) −0.0134 (5) 0.0084 (5) 0.0005 (5)
O2 0.0388 (7) 0.0268 (7) 0.0190 (6) −0.0089 (5) 0.0072 (5) −0.0038 (5)
O3 0.0244 (6) 0.0334 (7) 0.0195 (6) −0.0001 (5) 0.0065 (5) 0.0052 (5)
O4 0.0217 (6) 0.0242 (6) 0.0305 (7) 0.0010 (5) 0.0116 (5) 0.0023 (5)
N1 0.0269 (7) 0.0176 (7) 0.0247 (7) −0.0022 (5) 0.0093 (6) −0.0011 (6)
N2 0.0226 (7) 0.0477 (10) 0.0253 (8) −0.0078 (7) 0.0038 (6) 0.0046 (7)
N3 0.0226 (7) 0.0212 (7) 0.0176 (6) −0.0018 (5) 0.0052 (5) 0.0014 (5)
N4 0.0224 (7) 0.0229 (7) 0.0181 (6) 0.0010 (5) 0.0072 (5) 0.0027 (5)
C1 0.0162 (7) 0.0179 (8) 0.0214 (8) 0.0017 (6) 0.0048 (6) 0.0006 (6)
C2 0.0168 (7) 0.0196 (8) 0.0164 (7) 0.0012 (6) 0.0044 (6) 0.0009 (6)
C3 0.0210 (7) 0.0192 (8) 0.0203 (8) −0.0014 (6) 0.0057 (6) 0.0006 (6)
C4 0.0265 (8) 0.0257 (9) 0.0179 (8) −0.0038 (6) 0.0055 (6) −0.0018 (7)
C5 0.0230 (8) 0.0286 (9) 0.0173 (8) 0.0001 (6) 0.0051 (6) 0.0046 (7)
C6 0.0213 (8) 0.0185 (8) 0.0236 (8) 0.0013 (6) 0.0067 (7) 0.0049 (6)
C7 0.0195 (7) 0.0191 (8) 0.0193 (8) 0.0001 (6) 0.0046 (6) 0.0001 (6)
C8 0.0225 (8) 0.0192 (8) 0.0226 (8) 0.0023 (6) 0.0069 (6) 0.0009 (6)
C9 0.0220 (8) 0.0151 (7) 0.0199 (8) 0.0015 (6) 0.0074 (6) 0.0004 (6)
C10 0.0233 (8) 0.0164 (8) 0.0237 (8) 0.0013 (6) 0.0053 (6) −0.0014 (6)
C11 0.0321 (9) 0.0232 (9) 0.0199 (8) 0.0047 (7) 0.0040 (7) 0.0001 (7)
C12 0.0362 (9) 0.0215 (8) 0.0229 (8) 0.0053 (7) 0.0127 (7) 0.0044 (7)
C13 0.0254 (8) 0.0220 (8) 0.0283 (9) 0.0011 (6) 0.0117 (7) 0.0035 (7)
C14 0.0226 (8) 0.0150 (7) 0.0206 (8) 0.0006 (6) 0.0073 (6) −0.0009 (6)
C15 0.0221 (8) 0.0312 (9) 0.0215 (8) 0.0024 (7) 0.0011 (7) 0.0047 (7)
C16 0.0202 (8) 0.0394 (11) 0.0284 (9) 0.0058 (7) 0.0084 (7) 0.0089 (8)
C17 0.0294 (9) 0.0230 (8) 0.0222 (8) 0.0026 (7) 0.0106 (7) 0.0007 (7)
C18 0.0319 (9) 0.0216 (8) 0.0288 (9) 0.0050 (7) 0.0146 (8) 0.0047 (7)
C19 0.0305 (9) 0.0251 (9) 0.0203 (8) −0.0082 (7) 0.0036 (7) −0.0004 (7)
C20 0.0396 (10) 0.0300 (10) 0.0173 (8) −0.0114 (8) 0.0028 (7) −0.0022 (7)

Geometric parameters (Å, °)

O1—C7 1.315 (2) C6—H6 0.9500
O1—H1O 0.8402 C8—C13 1.411 (2)
O2—C7 1.223 (2) C8—C9 1.419 (2)
O3—C14 1.290 (2) C9—C10 1.397 (2)
O4—C14 1.243 (2) C9—C14 1.507 (2)
N1—C1 1.384 (2) C10—C11 1.384 (2)
N1—H1N 0.8800 C10—H10 0.9500
N1—H2N 0.8802 C11—C12 1.394 (3)
N2—C8 1.379 (2) C11—H11 0.9500
N2—H3N 0.8800 C12—C13 1.382 (3)
N2—H4N 0.8799 C12—H12 0.9500
N3—C17 1.479 (2) C13—H13 0.9500
N3—C19 1.480 (2) C15—C16 1.540 (2)
N3—C15 1.485 (2) C15—H15A 0.9900
N4—C18 1.483 (2) C15—H15B 0.9900
N4—C20 1.488 (2) C16—H16A 0.9900
N4—C16 1.489 (2) C16—H16B 0.9900
N4—H5N 0.9300 C17—C18 1.536 (2)
C1—C6 1.411 (2) C17—H17A 0.9900
C1—C2 1.417 (2) C17—H17B 0.9900
C2—C3 1.397 (2) C18—H18A 0.9900
C2—C7 1.494 (2) C18—H18B 0.9900
C3—C4 1.388 (2) C19—C20 1.541 (2)
C3—H3 0.9500 C19—H19A 0.9900
C4—C5 1.395 (2) C19—H19B 0.9900
C4—H4 0.9500 C20—H20A 0.9900
C5—C6 1.384 (2) C20—H20B 0.9900
C5—H5 0.9500
C7—O1—H1O 108.5 C10—C11—H11 120.6
C1—N1—H1N 114.1 C12—C11—H11 120.6
C1—N1—H2N 113.2 C13—C12—C11 120.57 (16)
H1N—N1—H2N 119.4 C13—C12—H12 119.7
C8—N2—H3N 118.3 C11—C12—H12 119.7
C8—N2—H4N 119.5 C12—C13—C8 121.35 (16)
H3N—N2—H4N 119.5 C12—C13—H13 119.3
C17—N3—C19 109.10 (14) C8—C13—H13 119.3
C17—N3—C15 108.67 (13) O4—C14—O3 123.47 (15)
C19—N3—C15 109.31 (14) O4—C14—C9 120.27 (15)
C18—N4—C20 109.67 (14) O3—C14—C9 116.19 (14)
C18—N4—C16 109.51 (14) N3—C15—C16 109.79 (13)
C20—N4—C16 109.83 (14) N3—C15—H15A 109.7
C18—N4—H5N 109.3 C16—C15—H15A 109.7
C20—N4—H5N 109.3 N3—C15—H15B 109.7
C16—N4—H5N 109.3 C16—C15—H15B 109.7
N1—C1—C6 118.89 (15) H15A—C15—H15B 108.2
N1—C1—C2 122.85 (14) N4—C16—C15 109.08 (13)
C6—C1—C2 118.18 (15) N4—C16—H16A 109.9
C3—C2—C1 119.56 (14) C15—C16—H16A 109.9
C3—C2—C7 119.14 (14) N4—C16—H16B 109.9
C1—C2—C7 121.29 (14) C15—C16—H16B 109.9
C4—C3—C2 121.70 (15) H16A—C16—H16B 108.3
C4—C3—H3 119.2 N3—C17—C18 110.71 (13)
C2—C3—H3 119.2 N3—C17—H17A 109.5
C3—C4—C5 118.66 (16) C18—C17—H17A 109.5
C3—C4—H4 120.7 N3—C17—H17B 109.5
C5—C4—H4 120.7 C18—C17—H17B 109.5
C6—C5—C4 120.95 (15) H17A—C17—H17B 108.1
C6—C5—H5 119.5 N4—C18—C17 108.48 (13)
C4—C5—H5 119.5 N4—C18—H18A 110.0
C5—C6—C1 120.87 (15) C17—C18—H18A 110.0
C5—C6—H6 119.6 N4—C18—H18B 110.0
C1—C6—H6 119.6 C17—C18—H18B 110.0
O2—C7—O1 123.04 (15) H18A—C18—H18B 108.4
O2—C7—C2 123.56 (15) N3—C19—C20 110.12 (14)
O1—C7—C2 113.39 (14) N3—C19—H19A 109.6
N2—C8—C13 119.39 (16) C20—C19—H19A 109.6
N2—C8—C9 122.57 (15) N3—C19—H19B 109.6
C13—C8—C9 118.03 (15) C20—C19—H19B 109.6
C10—C9—C8 119.14 (15) H19A—C19—H19B 108.2
C10—C9—C14 117.83 (15) N4—C20—C19 108.78 (14)
C8—C9—C14 122.98 (15) N4—C20—H20A 109.9
C11—C10—C9 122.13 (16) C19—C20—H20A 109.9
C11—C10—H10 118.9 N4—C20—H20B 109.9
C9—C10—H10 118.9 C19—C20—H20B 109.9
C10—C11—C12 118.74 (16) H20A—C20—H20B 108.3
N1—C1—C2—C3 −179.44 (14) C11—C12—C13—C8 1.6 (3)
C6—C1—C2—C3 −2.8 (2) N2—C8—C13—C12 179.51 (17)
N1—C1—C2—C7 1.4 (2) C9—C8—C13—C12 −1.6 (2)
C6—C1—C2—C7 178.02 (14) C10—C9—C14—O4 −19.9 (2)
C1—C2—C3—C4 1.9 (2) C8—C9—C14—O4 162.91 (15)
C7—C2—C3—C4 −178.95 (15) C10—C9—C14—O3 157.33 (15)
C2—C3—C4—C5 0.6 (2) C8—C9—C14—O3 −19.9 (2)
C3—C4—C5—C6 −2.2 (3) C17—N3—C15—C16 −62.35 (18)
C4—C5—C6—C1 1.2 (3) C19—N3—C15—C16 56.62 (19)
N1—C1—C6—C5 178.09 (15) C18—N4—C16—C15 57.55 (19)
C2—C1—C6—C5 1.3 (2) C20—N4—C16—C15 −62.94 (19)
C3—C2—C7—O2 −171.35 (16) N3—C15—C16—N4 5.0 (2)
C1—C2—C7—O2 7.8 (2) C19—N3—C17—C18 −62.15 (18)
C3—C2—C7—O1 9.0 (2) C15—N3—C17—C18 56.95 (18)
C1—C2—C7—O1 −171.82 (15) C20—N4—C18—C17 57.54 (18)
N2—C8—C9—C10 178.78 (16) C16—N4—C18—C17 −63.04 (18)
C13—C8—C9—C10 −0.1 (2) N3—C17—C18—N4 4.8 (2)
N2—C8—C9—C14 −4.0 (3) C17—N3—C19—C20 55.90 (18)
C13—C8—C9—C14 177.12 (15) C15—N3—C19—C20 −62.81 (18)
C8—C9—C10—C11 1.8 (2) C18—N4—C20—C19 −63.53 (19)
C14—C9—C10—C11 −175.57 (15) C16—N4—C20—C19 56.86 (19)
C9—C10—C11—C12 −1.8 (3) N3—C19—C20—N4 5.3 (2)
C10—C11—C12—C13 0.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1O···N3 0.84 1.77 2.597 (2) 168
N4—H5n···O3 0.93 1.64 2.546 (2) 166
N1—H2n···O2 0.88 2.03 2.725 (2) 135
N2—H3n···O3 0.88 2.04 2.696 (2) 131
N1—H1n···O4i 0.88 2.08 2.941 (2) 165
N2—H4n···N1ii 0.88 2.38 3.256 (2) 171

Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) −x+2, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6440).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Arman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2117. [DOI] [PMC free article] [PubMed]
  3. Arman, H. D. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2188. [DOI] [PMC free article] [PubMed]
  4. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  5. Chen, Z.-Y. & Peng, M.-X. (2011). J. Chem. Crystallogr. 41, 137–142.
  6. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  7. Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  8. Lynch, D. E., Smith, G., Byriel, K. A. & Kennard, C. H. L. (1998). Aust. J. Chem. 51, 587–592.
  9. Molecular Structure Corporation & Rigaku (2005). CrystalClear MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Wardell, J. L. & Tiekink, E. R. T. (2011). J. Chem. Crystallogr. 41, 1418–1424.
  12. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811041559/hb6440sup1.cif

e-67-o2933-sup1.cif (21.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811041559/hb6440Isup2.hkl

e-67-o2933-Isup2.hkl (217.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811041559/hb6440Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES