Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 12;67(Pt 11):o2934–o2935. doi: 10.1107/S1600536811041560

[1-(3-Chloro­phen­yl)-1H-1,2,3-triazol-4-yl]methanol hemihydrate

Nübia Boechat a, Maria de Lourdes G Ferreira a, Monica M Bastos a, James L Wardell b,, Solange M S V Wardell c, Edward R T Tiekink d,*
PMCID: PMC3247347  PMID: 22219965

Abstract

The asymmetric unit of the title hydrate, C9H8ClN3O·0.5H2O, comprises two independent 1,2,3-triazole mol­ecules and a water mol­ecule of crystallization. The dihedral angles between the six- and five-membered rings in the 1,2,3-triazole mol­ecules are 12.71 (19) and 17.3 (2)°. The most significant different between them is found in the relative orientations of the terminal CH2OH groups with one being close to perpendicular to the five-membered ring [N—C—C—O torsion angle = 82.2 (5)°], while in the other mol­ecule, a notable deviation from a perpendicular disposition is found [torsion angle = −60.3 (5)°]. Supra­molecular chains feature in the crystal packing sustained by O—H⋯(O,N) inter­actions along the a-axis direction. The chains are connected via C—H⋯N inter­actions and the resultant layers stack along the b axis.

Related literature

For background to the synthesis, biological activity and structures of 1,2,3-triazole derivatives, see: Boechat et al. (2010, 2011); Costa et al. (2006a ,b ); Ferreira et al. (2007); Jordão et al. (2009). For the synthesis, see: Boechat et al. (2011). For additional geometric analysis, see: Spek (2009).graphic file with name e-67-o2934-scheme1.jpg

Experimental

Crystal data

  • C9H8ClN3O·0.5H2O

  • M r = 218.64

  • Triclinic, Inline graphic

  • a = 6.0078 (4) Å

  • b = 7.4897 (4) Å

  • c = 22.3145 (15) Å

  • α = 88.818 (4)°

  • β = 89.901 (2)°

  • γ = 80.493 (4)°

  • V = 990.07 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 120 K

  • 0.18 × 0.18 × 0.02 mm

Data collection

  • Bruker–Nonius APEX II CCD camera on κ-goniostat diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007) T min = 0.843, T max = 1.000

  • 10830 measured reflections

  • 3909 independent reflections

  • 2948 reflections with I > 2σ(I)

  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.064

  • wR(F 2) = 0.163

  • S = 1.00

  • 3909 reflections

  • 274 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), QMol (Gans & Shalloway, 2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811041560/hb6439sup1.cif

e-67-o2934-sup1.cif (21.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811041560/hb6439Isup2.hkl

e-67-o2934-Isup2.hkl (187.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811041560/hb6439Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯O2i 0.84 (4) 1.82 (4) 2.651 (5) 170 (5)
O2—H2o⋯O1w 0.84 (6) 1.80 (5) 2.641 (5) 174 (7)
O1w—H1w⋯N3 0.84 (4) 2.00 (4) 2.837 (5) 172 (4)
O1w—H2w⋯O1ii 0.84 (4) 1.95 (5) 2.663 (5) 142 (4)
C16—H16⋯O1wiii 0.95 2.45 3.383 (5) 166
C7—H7⋯N6iv 0.95 2.28 3.197 (5) 161

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES and FAPEMIG (Brazil).

supplementary crystallographic information

Comment

Boechat and colleagues have been interested in the synthesis, biological activities and structures of 1,2,3-triazole derivatives for some time (Boechat et al., 2010, 2011; Costa et al., 2006a, 2006b; Ferreira et al., 2007, Jordão et al., 2009). Recently, they reported the synthesis and anti-mycobacterial activities of a number of 4-R-1-(X-phenyl)-triazole derivatives (Boechat et al., 2011). The structure of one of the compounds investigated in that study, i.e. the title compound, (I), is now reported.

Two independent molecules of a 1,2,3-triazole derivative and a water molecule of solvation comprise the asymmetric unit of (I), Fig. 1. Geometrically, the two organic molecules are similar to each other with r.m.s. deviations for bond distances and angles being 0.0092 Å and 0.757°, respectively (Spek, 2009). From the overlay diagram, Fig. 2, it is evident that the independent molecules approximate mirror images. However, small twists between the five- and six-membered rings differ with the dihedral angles between their least-squares being 12.71 (19) and 17.3 (2)°, respectively, for the N1- and N4-containing molecules. More notable are the relative orientations of the terminal CH2OH groups as seen in the values of the N3—C8—C9—O1 and N6—C17—C18—O2 torsion angles of 82.2 (5) and -60.3 (5)°, respectively.

The presence of a supramolecular chain along the a axis is the most prominent feature of the crystal packing, Fig. 3. These are mediated by O—H···O and O—H···N hydrogen bonds with additional stability afforded by C—H···O interactions, Table 1. Chains are connected into layers via C—H···N interactions, Table 1, and these stack along the b axis. The closest interactions between layers are of the type Cl···Cl, i.e. Cl1···Cl2i = 3.4117 (15) Å for i: 2 - x, 1 - y, 1 - z.

Experimental

The compound, obtained as published (Boechat et al., 2011), was recrystallized from EtOH as a hemihydrate.

Refinement

The C-bound H atoms were geometrically placed (C—H = 0.95–0.99 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The O—H H atoms were located from a difference map and refined with O—H = 0.84±0.01 Å, and with Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

The molecular structures of the components comprising the asymmetric unit in (I) showing displacement ellipsoids at the 50% probability level.

Fig. 2.

Fig. 2.

An overlay diagram of the two independent molecules in (I). The red and blue images illustrate the N1- and N3-containing molecules, respectively.

Fig. 3.

Fig. 3.

A view of the supramolecular chain aligned along the a axis in (I) mediated by O—H···O (red dashed lines), O—H···N (blue) hydrogen bonds and C—H···O interactions (green).

Fig. 4.

Fig. 4.

A view in projection down the a axis of the unit-cell contents in (I) showing the stacking of layers along the b axis. The O—H···O, O—H···N and C—H···O interactions are shown as orange, blue and green dashed lines, respectively.

Crystal data

C9H8ClN3O·0.5H2O Z = 4
Mr = 218.64 F(000) = 452
Triclinic, P1 Dx = 1.467 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.0078 (4) Å Cell parameters from 19812 reflections
b = 7.4897 (4) Å θ = 2.9–27.5°
c = 22.3145 (15) Å µ = 0.36 mm1
α = 88.818 (4)° T = 120 K
β = 89.901 (2)° Plate, colourless
γ = 80.493 (4)° 0.18 × 0.18 × 0.02 mm
V = 990.07 (11) Å3

Data collection

Bruker–Nonius APEX II CCD camera on κ-goniostat diffractometer 3909 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode 2948 reflections with I > 2σ(I)
10cm confocal mirrors Rint = 0.038
Detector resolution: 9.091 pixels mm-1 θmax = 26.5°, θmin = 2.9°
φ and ω scans h = −7→7
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) k = −9→9
Tmin = 0.843, Tmax = 1.000 l = −28→28
10830 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163 H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0446P)2 + 2.5602P] where P = (Fo2 + 2Fc2)/3
3909 reflections (Δ/σ)max = 0.012
274 parameters Δρmax = 0.41 e Å3
5 restraints Δρmin = −0.34 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.85344 (17) 0.75800 (15) 0.46687 (4) 0.0449 (3)
O1 0.5639 (6) 0.7737 (5) 0.05307 (13) 0.0595 (9)
H1O 0.629 (9) 0.747 (7) 0.0204 (13) 0.089*
N1 0.6411 (5) 0.8503 (4) 0.24523 (13) 0.0297 (6)
N2 0.8433 (5) 0.7528 (4) 0.23011 (14) 0.0386 (7)
N3 0.8614 (6) 0.7674 (4) 0.17193 (14) 0.0424 (8)
C1 0.6580 (6) 0.8250 (5) 0.41004 (15) 0.0304 (7)
C2 0.4384 (6) 0.8954 (5) 0.42488 (16) 0.0343 (8)
H2 0.3932 0.9055 0.4657 0.041*
C3 0.2852 (6) 0.9509 (5) 0.37926 (15) 0.0331 (8)
H3 0.1338 1.0005 0.3889 0.040*
C4 0.3494 (6) 0.9352 (5) 0.31987 (16) 0.0317 (8)
H4 0.2426 0.9724 0.2889 0.038*
C5 0.5708 (6) 0.8647 (4) 0.30588 (15) 0.0280 (7)
C6 0.7280 (6) 0.8092 (5) 0.35095 (15) 0.0314 (8)
H6 0.8801 0.7614 0.3414 0.038*
C7 0.5315 (6) 0.9254 (5) 0.19577 (15) 0.0322 (8)
H7 0.3870 0.9992 0.1940 0.039*
C8 0.6716 (7) 0.8731 (5) 0.14894 (16) 0.0381 (9)
C9 0.6412 (8) 0.9160 (6) 0.08392 (17) 0.0484 (11)
H9A 0.5309 1.0289 0.0784 0.058*
H9B 0.7867 0.9368 0.0665 0.058*
Cl2 0.7137 (2) 0.31120 (15) 0.43211 (4) 0.0519 (3)
O2 1.1922 (7) 0.3320 (5) 0.04279 (18) 0.0843 (14)
H2O 1.219 (12) 0.422 (6) 0.062 (3) 0.126*
N4 0.7744 (5) 0.2978 (4) 0.20400 (13) 0.0306 (6)
N5 0.9702 (5) 0.1798 (5) 0.21008 (15) 0.0433 (8)
N6 1.0590 (6) 0.1604 (5) 0.15647 (16) 0.0485 (9)
C10 0.5956 (6) 0.3531 (5) 0.36144 (16) 0.0348 (8)
C11 0.3706 (6) 0.4305 (5) 0.35577 (16) 0.0359 (8)
H11 0.2793 0.4587 0.3902 0.043*
C12 0.2826 (6) 0.4657 (5) 0.29895 (17) 0.0389 (9)
H12 0.1293 0.5210 0.2943 0.047*
C13 0.4137 (6) 0.4217 (5) 0.24830 (16) 0.0318 (8)
H13 0.3506 0.4445 0.2093 0.038*
C14 0.6367 (6) 0.3444 (4) 0.25557 (16) 0.0309 (8)
C15 0.7315 (6) 0.3090 (5) 0.31195 (16) 0.0323 (8)
H15 0.8855 0.2558 0.3166 0.039*
C16 0.7421 (6) 0.3525 (5) 0.14617 (16) 0.0350 (8)
H16 0.6188 0.4348 0.1298 0.042*
C17 0.9245 (7) 0.2643 (5) 0.11626 (18) 0.0395 (9)
C18 0.9826 (8) 0.2697 (6) 0.05057 (19) 0.0538 (12)
H18A 0.9928 0.1471 0.0339 0.065*
H18B 0.8623 0.3516 0.0287 0.065*
O1W 1.2489 (5) 0.6147 (4) 0.10634 (13) 0.0491 (7)
H1W 1.143 (6) 0.661 (6) 0.1286 (19) 0.074*
H2W 1.293 (8) 0.698 (5) 0.086 (2) 0.074*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0387 (5) 0.0620 (7) 0.0332 (5) −0.0063 (4) −0.0052 (4) 0.0013 (4)
O1 0.081 (2) 0.077 (2) 0.0334 (15) −0.0501 (19) 0.0214 (15) −0.0252 (15)
N1 0.0308 (16) 0.0279 (15) 0.0314 (15) −0.0076 (12) 0.0057 (12) −0.0036 (12)
N2 0.0380 (18) 0.0384 (18) 0.0380 (17) −0.0016 (14) 0.0155 (14) −0.0037 (13)
N3 0.049 (2) 0.0433 (19) 0.0375 (18) −0.0135 (15) 0.0174 (16) −0.0073 (14)
C1 0.0303 (18) 0.0333 (19) 0.0288 (17) −0.0085 (14) −0.0026 (14) −0.0010 (14)
C2 0.037 (2) 0.039 (2) 0.0283 (18) −0.0112 (16) 0.0055 (16) −0.0051 (15)
C3 0.0289 (18) 0.039 (2) 0.0310 (18) −0.0040 (15) 0.0073 (15) −0.0030 (15)
C4 0.0339 (19) 0.0316 (19) 0.0298 (18) −0.0061 (14) 0.0050 (15) −0.0024 (14)
C5 0.0308 (18) 0.0259 (17) 0.0283 (17) −0.0074 (13) 0.0036 (14) −0.0025 (13)
C6 0.0280 (18) 0.0317 (19) 0.0348 (19) −0.0056 (14) 0.0070 (15) −0.0043 (14)
C7 0.0345 (19) 0.0354 (19) 0.0290 (18) −0.0120 (15) 0.0024 (15) −0.0039 (14)
C8 0.048 (2) 0.038 (2) 0.0327 (19) −0.0193 (17) 0.0104 (17) −0.0109 (16)
C9 0.070 (3) 0.051 (3) 0.032 (2) −0.032 (2) 0.014 (2) −0.0089 (18)
Cl2 0.0633 (7) 0.0630 (7) 0.0319 (5) −0.0187 (5) −0.0054 (5) 0.0050 (4)
O2 0.093 (3) 0.094 (3) 0.085 (3) −0.067 (2) 0.063 (2) −0.049 (2)
N4 0.0293 (15) 0.0294 (15) 0.0333 (16) −0.0048 (12) 0.0040 (12) −0.0042 (12)
N5 0.0298 (17) 0.050 (2) 0.047 (2) 0.0020 (14) 0.0020 (15) −0.0105 (15)
N6 0.0359 (19) 0.057 (2) 0.053 (2) −0.0086 (16) 0.0100 (17) −0.0177 (17)
C10 0.043 (2) 0.034 (2) 0.0289 (18) −0.0136 (16) −0.0044 (16) 0.0042 (14)
C11 0.041 (2) 0.036 (2) 0.0318 (19) −0.0101 (16) 0.0087 (16) −0.0011 (15)
C12 0.034 (2) 0.036 (2) 0.045 (2) −0.0018 (16) 0.0087 (17) −0.0016 (16)
C13 0.0333 (19) 0.0312 (19) 0.0316 (18) −0.0075 (14) −0.0006 (15) −0.0011 (14)
C14 0.0329 (19) 0.0259 (18) 0.0355 (19) −0.0087 (14) 0.0080 (15) −0.0039 (14)
C15 0.0308 (19) 0.0333 (19) 0.0340 (19) −0.0086 (14) −0.0009 (15) 0.0027 (14)
C16 0.041 (2) 0.034 (2) 0.0316 (19) −0.0113 (16) 0.0063 (16) −0.0002 (15)
C17 0.044 (2) 0.038 (2) 0.042 (2) −0.0190 (17) 0.0149 (18) −0.0105 (17)
C18 0.061 (3) 0.063 (3) 0.046 (2) −0.033 (2) 0.026 (2) −0.019 (2)
O1W 0.0453 (17) 0.065 (2) 0.0381 (16) −0.0109 (14) 0.0155 (13) −0.0064 (14)

Geometric parameters (Å, °)

Cl1—C1 1.739 (4) O2—C18 1.423 (5)
O1—C9 1.422 (5) O2—H2O 0.840 (10)
O1—H1O 0.839 (10) N4—C16 1.350 (4)
N1—C7 1.350 (4) N4—N5 1.355 (4)
N1—N2 1.356 (4) N4—C14 1.431 (4)
N1—C5 1.418 (4) N5—N6 1.310 (5)
N2—N3 1.307 (4) N6—C17 1.353 (5)
N3—C8 1.370 (5) C10—C11 1.385 (5)
C1—C2 1.380 (5) C10—C15 1.385 (5)
C1—C6 1.385 (5) C11—C12 1.378 (5)
C2—C3 1.384 (5) C11—H11 0.9500
C2—H2 0.9500 C12—C13 1.390 (5)
C3—C4 1.382 (5) C12—H12 0.9500
C3—H3 0.9500 C13—C14 1.377 (5)
C4—C5 1.385 (5) C13—H13 0.9500
C4—H4 0.9500 C14—C15 1.384 (5)
C5—C6 1.390 (5) C15—H15 0.9500
C6—H6 0.9500 C16—C17 1.364 (5)
C7—C8 1.363 (5) C16—H16 0.9500
C7—H7 0.9500 C17—C18 1.507 (5)
C8—C9 1.485 (5) C18—H18A 0.9900
C9—H9A 0.9900 C18—H18B 0.9900
C9—H9B 0.9900 O1W—H1W 0.840 (10)
Cl2—C10 1.731 (4) O1W—H2W 0.838 (10)
C9—O1—H1O 115 (4) C16—N4—N5 110.3 (3)
C7—N1—N2 110.3 (3) C16—N4—C14 130.2 (3)
C7—N1—C5 128.6 (3) N5—N4—C14 119.5 (3)
N2—N1—C5 121.1 (3) N6—N5—N4 106.6 (3)
N3—N2—N1 106.9 (3) N5—N6—C17 109.9 (3)
N2—N3—C8 109.7 (3) C11—C10—C15 121.9 (3)
C2—C1—C6 121.7 (3) C11—C10—Cl2 119.7 (3)
C2—C1—Cl1 119.3 (3) C15—C10—Cl2 118.5 (3)
C6—C1—Cl1 119.0 (3) C12—C11—C10 118.3 (3)
C1—C2—C3 118.8 (3) C12—C11—H11 120.8
C1—C2—H2 120.6 C10—C11—H11 120.8
C3—C2—H2 120.6 C11—C12—C13 121.3 (4)
C4—C3—C2 120.9 (3) C11—C12—H12 119.4
C4—C3—H3 119.6 C13—C12—H12 119.4
C2—C3—H3 119.6 C14—C13—C12 118.9 (3)
C3—C4—C5 119.5 (3) C14—C13—H13 120.6
C3—C4—H4 120.3 C12—C13—H13 120.6
C5—C4—H4 120.3 C13—C14—C15 121.4 (3)
C6—C5—C4 120.7 (3) C13—C14—N4 119.7 (3)
C6—C5—N1 119.0 (3) C15—C14—N4 118.8 (3)
C4—C5—N1 120.4 (3) C14—C15—C10 118.2 (3)
C5—C6—C1 118.5 (3) C14—C15—H15 120.9
C5—C6—H6 120.7 C10—C15—H15 120.9
C1—C6—H6 120.7 N4—C16—C17 105.2 (3)
N1—C7—C8 105.6 (3) N4—C16—H16 127.4
N1—C7—H7 127.2 C17—C16—H16 127.4
C8—C7—H7 127.2 N6—C17—C16 108.0 (3)
C7—C8—N3 107.5 (3) N6—C17—C18 122.0 (4)
C7—C8—C9 129.8 (4) C16—C17—C18 129.9 (4)
N3—C8—C9 122.7 (3) O2—C18—C17 109.9 (4)
O1—C9—C8 111.6 (3) O2—C18—H18A 109.7
O1—C9—H9A 109.3 C17—C18—H18A 109.7
C8—C9—H9A 109.3 O2—C18—H18B 109.7
O1—C9—H9B 109.3 C17—C18—H18B 109.7
C8—C9—H9B 109.3 H18A—C18—H18B 108.2
H9A—C9—H9B 108.0 H1W—O1W—H2W 109 (4)
C18—O2—H2O 120 (5)
C7—N1—N2—N3 0.5 (4) C16—N4—N5—N6 −0.2 (4)
C5—N1—N2—N3 −179.0 (3) C14—N4—N5—N6 179.2 (3)
N1—N2—N3—C8 −0.3 (4) N4—N5—N6—C17 0.3 (4)
C6—C1—C2—C3 0.1 (5) C15—C10—C11—C12 −0.7 (5)
Cl1—C1—C2—C3 179.0 (3) Cl2—C10—C11—C12 178.7 (3)
C1—C2—C3—C4 0.5 (5) C10—C11—C12—C13 1.3 (5)
C2—C3—C4—C5 −0.7 (5) C11—C12—C13—C14 −1.1 (5)
C3—C4—C5—C6 0.3 (5) C12—C13—C14—C15 0.4 (5)
C3—C4—C5—N1 −178.9 (3) C12—C13—C14—N4 179.9 (3)
C7—N1—C5—C6 −166.4 (3) C16—N4—C14—C13 17.2 (5)
N2—N1—C5—C6 12.9 (5) N5—N4—C14—C13 −162.1 (3)
C7—N1—C5—C4 12.8 (5) C16—N4—C14—C15 −163.2 (3)
N2—N1—C5—C4 −167.9 (3) N5—N4—C14—C15 17.4 (5)
C4—C5—C6—C1 0.3 (5) C13—C14—C15—C10 0.1 (5)
N1—C5—C6—C1 179.5 (3) N4—C14—C15—C10 −179.4 (3)
C2—C1—C6—C5 −0.5 (5) C11—C10—C15—C14 0.0 (5)
Cl1—C1—C6—C5 −179.4 (3) Cl2—C10—C15—C14 −179.4 (3)
N2—N1—C7—C8 −0.4 (4) N5—N4—C16—C17 0.1 (4)
C5—N1—C7—C8 179.0 (3) C14—N4—C16—C17 −179.3 (3)
N1—C7—C8—N3 0.2 (4) N5—N6—C17—C16 −0.3 (4)
N1—C7—C8—C9 −179.4 (3) N5—N6—C17—C18 −179.8 (3)
N2—N3—C8—C7 0.1 (4) N4—C16—C17—N6 0.1 (4)
N2—N3—C8—C9 179.7 (3) N4—C16—C17—C18 179.6 (4)
C7—C8—C9—O1 −98.3 (5) N6—C17—C18—O2 −60.3 (5)
N3—C8—C9—O1 82.2 (5) C16—C17—C18—O2 120.2 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1o···O2i 0.84 (4) 1.82 (4) 2.651 (5) 170 (5)
O2—H2o···O1w 0.84 (6) 1.80 (5) 2.641 (5) 174 (7)
O1w—H1w···N3 0.84 (4) 2.00 (4) 2.837 (5) 172 (4)
O1w—H2w···O1ii 0.84 (4) 1.95 (5) 2.663 (5) 142 (4)
C16—H16···O1wiii 0.95 2.45 3.383 (5) 166
C7—H7···N6iv 0.95 2.28 3.197 (5) 161

Symmetry codes: (i) −x+2, −y+1, −z; (ii) x+1, y, z; (iii) x−1, y, z; (iv) x−1, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6439).

References

  1. Boechat, N., Ferreira, V. F., Ferreira, S. B., Ferreira, M. de L. G., da Silva, F. de C., Bastos, M. M., Costa, M. dos S., Lourenço, M. C. S., Pinto, A. C., Krettli, A. U., Aguiar, A. C., Teixeira, B. M., da Silva, N. V., Martins, P. R. C., Bezerra, F. A. F. M., Camilo, A. L. S., da Silva, G. P. & Costa, C. C. P. (2011). J. Med. Chem. 54, 5988–5999. [DOI] [PubMed]
  2. Boechat, N., Ferreira, M. de L. G., Maria Bastos, M. M., Camilo, A. L. S., Wardell, S. M. S. V., Wardell, J. L. & Tiekink, E. R. T. (2010). J. Chem. Crystallogr. 40, 1137–1141.
  3. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Costa, M. S., Boechat, N., Ferreira, V. F., Wardell, S. M. S. V. & Skakle, J. M. S. (2006a). Acta Cryst. E62, o1925–o1927.
  5. Costa, M. S., Boechat, N., Rangel, E. A., Lourenço, M. C. S., Junior, I. N., Castro, H. C., de Souza, A. M. T., da Silva, F. C., Wardell, S. M. S. V., Rodrigues, C. R. & Ferreira, V. F. (2006b). Bioorg. Med. Chem. 14, 8644–8653. [DOI] [PubMed]
  6. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  7. Ferreira, S. B., Costa, M. S., Boechat, N., Bezerra, R. J. S., Genestra, M. S., Canto-Cavalheiro, M. M., Kover, W. B., Vitor, F. & Ferreira, V. F. (2007). Eur. J. Med. Chem. 42, 1388–1395. [DOI] [PubMed]
  8. Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557–559. [DOI] [PubMed]
  9. Hooft, R. W. W. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  10. Jordão, A. K., Afonso, P. P., Ferreira, V. F., de Souza, M. C. B. V., Almeida, M. C. B., Beltrame, C. O., Paiva, D. P., Wardell, S. M. S. V. J. L., Tiekink, E. R. T., Damaso, C. R., Anna, C. & Cunha, A. C. (2009). Eur. J. Med. Chem. 44, 3777–3783. [DOI] [PubMed]
  11. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  12. Sheldrick, G. M. (2007). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  15. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811041560/hb6439sup1.cif

e-67-o2934-sup1.cif (21.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811041560/hb6439Isup2.hkl

e-67-o2934-Isup2.hkl (187.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811041560/hb6439Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES