Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 12;67(Pt 11):o2940. doi: 10.1107/S1600536811041651

2-Chloro-N-(4-methyl­phen­yl)benzamide

Vinola Z Rodrigues a, Peter Herich b, B Thimme Gowda a,*, Jozef Kožíšek b
PMCID: PMC3247352  PMID: 22219970

Abstract

In the title compound, C14H12ClNO, the ortho-Cl atom in the benzoyl ring is positioned syn to the C=O bond. The benzoyl and aniline benzene rings are tilted relative to each other by 82.8 (1)°. In the crystal, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into infinite chains running along the c-axis direction.

Related literature

For the preparation of the title compound, see: Gowda et al. (2003). For studies on the effects of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Bowes et al. (2003); Gowda et al. (2000); Saeed et al. (2010), on N-(ar­yl)-methane­sulfonamides, see: Gowda et al. (2007), on N-(ar­yl)-aryl­sulfonamides, see: Shetty & Gowda (2005) and on N-chloro-aryl­sulfonamides, see: Gowda & Shetty (2004).graphic file with name e-67-o2940-scheme1.jpg

Experimental

Crystal data

  • C14H12ClNO

  • M r = 245.70

  • Monoclinic, Inline graphic

  • a = 20.2969 (14) Å

  • b = 7.1850 (5) Å

  • c = 8.8662 (5) Å

  • β = 93.750 (5)°

  • V = 1290.22 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 293 K

  • 0.92 × 0.28 × 0.07 mm

Data collection

  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: analytical [CrysAlis RED (Oxford Diffraction, 2009), based on expressions derived from Clark & Reid (1995)] T min = 0.911, T max = 0.981

  • 21209 measured reflections

  • 3594 independent reflections

  • 1870 reflections with I > 2σ(I)

  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057

  • wR(F 2) = 0.138

  • S = 1.03

  • 3594 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.42 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2002); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811041651/bt5668sup1.cif

e-67-o2940-sup1.cif (16.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811041651/bt5668Isup2.hkl

e-67-o2940-Isup2.hkl (159.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811041651/bt5668Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 2.01 2.847 (2) 165

Symmetry code: (i) Inline graphic.

Acknowledgments

PH and JK thank the VEGA Grant Agency of Slovak Ministry of Education 1/0679/11 and the Research and Development Agency of Slovakia (APVV-0202–10) for financial support and the Structural Funds, Inter­reg IIIA, for financial support in purchasing the diffractometer. VZR thanks the University Grants Commission, Government of India, New Delhi, for the award of an RFSMS research fellowship.

supplementary crystallographic information

Comment

The amide and sulfonamide moieties are the constituents of many biologically significant compounds. As part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Bowes et al., 2003; Gowda et al., 2000; Saeed et al., 2010), N-(aryl)-methanesulfonamides (Gowda et al., 2007), N-(aryl)-arylsulfonamides (Shetty & Gowda, 2005) and N-chloro-arylsulfonamides (Gowda & Shetty, 2004), in the present work, the crystal structure of 2-chloro-N-(4-methylphenyl)benzamide (I) has been determined (Fig.1).

In (I), the ortho-Cl atom in the benzoyl ring is positioned syn to the C=O bond and anti to the N–H bond of the C—NH—C(O)—C segment.

The central amide group –NHCO– is tilted to the anilino ring with the C9—C8—N1—C1 and C13—C8—N1—C1 torsion angles of -144.4 (2)° and 35.6 (3)°. The C3—C2—C1—N1 and C7—C2—C1—N1 torsion angles are -118.8 (2)° and 64.0 (3)°, respectively, while the C3—C2—C1—O1 and C7—C2—C1—O1 torsion angles are 61.8 (3)° and -115.4 (2)°, respectively. But the C2—C1—N1—C8 and C8—N1—C1—O1 torsion angles are 178.0 (2)° and -2.7 (3)°, respectively.

In the crystal structure, intermolecular N—H···O hydrogen bonds link the molecules into infinite chains running along the c-axis. Part of the crystal structure is shown in Fig. 2.

Experimental

The title compound was prepared according to the method described by Gowda et al. (2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Rod like colourless single crystals of the title compound used in X-ray diffraction studies were obtained by slow evaporation of an ethanol solution of the compound (0.5 g in 30 ml of ethanol) at room temperature.

Refinement

All hydrogen atoms were placed in calculated positions with C–H distances of 0.93Å (C-aromatic), 0.96Å (C-methyl), 0.86Å (N-H) and constrained to ride on their parent atoms. The Uiso(H) values were set at 1.2 Ueq (C-aromatic, N) and 1.5 Ueq(C-methyl).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Part of the crystal structure of the title compound. Molecular chains are generated by N—H···O hydrogen bonds which are shown by dashed lines. H atoms not involved in intermolecular bonding have been omitted.

Crystal data

C14H12ClNO F(000) = 512
Mr = 245.70 Dx = 1.265 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3776 reflections
a = 20.2969 (14) Å θ = 3.5–29.5°
b = 7.1850 (5) Å µ = 0.28 mm1
c = 8.8662 (5) Å T = 293 K
β = 93.750 (5)° Rod, colorless
V = 1290.22 (15) Å3 0.92 × 0.28 × 0.07 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur Ruby Gemini diffractometer 3594 independent reflections
Radiation source: Enhance (Mo) X-ray Source 1870 reflections with I > 2σ(I)
graphite Rint = 0.038
Detector resolution: 10.4340 pixels mm-1 θmax = 29.5°, θmin = 3.5°
ω scans h = −28→28
Absorption correction: analytical [CrysAlis RED (Oxford Diffraction, 2009), based on expressions derived from Clark & Reid (1995)] k = −9→9
Tmin = 0.911, Tmax = 0.981 l = −12→12
21209 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0457P)2 + 0.4284P] where P = (Fo2 + 2Fc2)/3
3594 reflections (Δ/σ)max < 0.001
154 parameters Δρmax = 0.35 e Å3
0 restraints Δρmin = −0.42 e Å3

Special details

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived (Clark & Reid, 1995).
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.22887 (10) 0.1405 (3) 0.4095 (2) 0.0490 (5)
C2 0.17841 (10) 0.0438 (3) 0.30648 (19) 0.0481 (5)
C3 0.11200 (11) 0.0438 (3) 0.3330 (2) 0.0568 (5)
C4 0.06674 (12) −0.0529 (4) 0.2409 (3) 0.0719 (6)
H4A 0.0221 −0.0500 0.2589 0.086*
C5 0.08826 (14) −0.1534 (4) 0.1225 (3) 0.0820 (8)
H5A 0.0581 −0.2215 0.0614 0.098*
C6 0.15356 (14) −0.1548 (4) 0.0931 (3) 0.0808 (8)
H6A 0.1675 −0.2227 0.0118 0.097*
C7 0.19841 (11) −0.0560 (3) 0.1836 (2) 0.0616 (6)
H7A 0.2427 −0.0559 0.1624 0.074*
C8 0.31056 (9) 0.3950 (3) 0.4145 (2) 0.0524 (5)
C9 0.31260 (12) 0.5767 (4) 0.3668 (3) 0.0693 (6)
H9A 0.2826 0.6178 0.2901 0.083*
C10 0.35880 (13) 0.6989 (4) 0.4316 (3) 0.0797 (7)
H10A 0.3590 0.8218 0.3987 0.096*
C11 0.40448 (12) 0.6430 (4) 0.5435 (3) 0.0757 (7)
C12 0.40141 (11) 0.4610 (5) 0.5898 (3) 0.0802 (8)
H12A 0.4315 0.4201 0.6664 0.096*
C13 0.35533 (11) 0.3354 (4) 0.5273 (2) 0.0668 (6)
H13A 0.3548 0.2130 0.5612 0.080*
C14 0.45614 (15) 0.7752 (5) 0.6112 (3) 0.1150 (12)
H14C 0.4833 0.7117 0.6876 0.138*
H14B 0.4349 0.8791 0.6556 0.138*
H14A 0.4831 0.8187 0.5335 0.138*
N1 0.26167 (8) 0.2768 (2) 0.34391 (17) 0.0544 (4)
H1A 0.2521 0.2947 0.2491 0.065*
O1 0.23840 (8) 0.0938 (2) 0.54154 (14) 0.0692 (5)
Cl1 0.08462 (3) 0.17186 (12) 0.48200 (8) 0.0953 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0552 (11) 0.0531 (12) 0.0382 (10) 0.0015 (10) −0.0008 (8) −0.0014 (9)
C2 0.0600 (12) 0.0441 (11) 0.0395 (10) −0.0023 (9) −0.0016 (8) 0.0020 (9)
C3 0.0613 (13) 0.0547 (13) 0.0540 (11) 0.0004 (10) 0.0018 (10) −0.0008 (10)
C4 0.0613 (14) 0.0739 (16) 0.0796 (16) −0.0134 (12) −0.0017 (12) −0.0015 (14)
C5 0.0859 (19) 0.0788 (18) 0.0796 (17) −0.0274 (15) −0.0074 (14) −0.0225 (14)
C6 0.096 (2) 0.0765 (18) 0.0701 (15) −0.0153 (15) 0.0047 (14) −0.0292 (14)
C7 0.0690 (14) 0.0618 (14) 0.0541 (12) −0.0077 (11) 0.0048 (10) −0.0105 (11)
C8 0.0491 (11) 0.0684 (15) 0.0396 (10) −0.0058 (10) 0.0023 (8) −0.0047 (10)
C9 0.0732 (15) 0.0747 (17) 0.0586 (13) −0.0149 (13) −0.0072 (11) 0.0063 (12)
C10 0.0863 (18) 0.0782 (18) 0.0751 (16) −0.0268 (15) 0.0082 (14) −0.0070 (14)
C11 0.0594 (14) 0.104 (2) 0.0648 (15) −0.0233 (14) 0.0090 (12) −0.0228 (15)
C12 0.0530 (14) 0.116 (2) 0.0688 (15) 0.0004 (15) −0.0146 (11) −0.0135 (16)
C13 0.0573 (13) 0.0780 (16) 0.0631 (13) 0.0035 (12) −0.0111 (11) −0.0031 (12)
C14 0.085 (2) 0.156 (3) 0.105 (2) −0.051 (2) 0.0105 (17) −0.046 (2)
N1 0.0606 (10) 0.0670 (11) 0.0341 (8) −0.0105 (9) −0.0069 (7) 0.0021 (8)
O1 0.0919 (11) 0.0781 (11) 0.0360 (7) −0.0142 (9) −0.0084 (7) 0.0082 (7)
Cl1 0.0758 (5) 0.1171 (6) 0.0947 (5) 0.0072 (4) 0.0185 (4) −0.0381 (4)

Geometric parameters (Å, °)

C1—O1 1.221 (2) C8—C13 1.375 (3)
C1—N1 1.339 (2) C8—N1 1.420 (2)
C1—C2 1.498 (3) C9—C10 1.382 (3)
C2—C3 1.383 (3) C9—H9A 0.9300
C2—C7 1.387 (3) C10—C11 1.373 (4)
C3—C4 1.377 (3) C10—H10A 0.9300
C3—Cl1 1.731 (2) C11—C12 1.373 (4)
C4—C5 1.369 (3) C11—C14 1.510 (3)
C4—H4A 0.9300 C12—C13 1.389 (3)
C5—C6 1.368 (4) C12—H12A 0.9300
C5—H5A 0.9300 C13—H13A 0.9300
C6—C7 1.372 (3) C14—H14C 0.9600
C6—H6A 0.9300 C14—H14B 0.9600
C7—H7A 0.9300 C14—H14A 0.9600
C8—C9 1.374 (3) N1—H1A 0.8600
O1—C1—N1 124.43 (18) C8—C9—C10 120.6 (2)
O1—C1—C2 121.11 (18) C8—C9—H9A 119.7
N1—C1—C2 114.45 (15) C10—C9—H9A 119.7
C3—C2—C7 118.16 (18) C11—C10—C9 121.5 (3)
C3—C2—C1 122.10 (17) C11—C10—H10A 119.3
C7—C2—C1 119.68 (18) C9—C10—H10A 119.3
C4—C3—C2 121.3 (2) C10—C11—C12 116.9 (2)
C4—C3—Cl1 119.06 (18) C10—C11—C14 121.5 (3)
C2—C3—Cl1 119.65 (16) C12—C11—C14 121.6 (3)
C5—C4—C3 119.1 (2) C11—C12—C13 122.8 (2)
C5—C4—H4A 120.4 C11—C12—H12A 118.6
C3—C4—H4A 120.4 C13—C12—H12A 118.6
C6—C5—C4 120.8 (2) C8—C13—C12 118.9 (3)
C6—C5—H5A 119.6 C8—C13—H13A 120.5
C4—C5—H5A 119.6 C12—C13—H13A 120.5
C5—C6—C7 119.9 (2) C11—C14—H14C 109.5
C5—C6—H6A 120.0 C11—C14—H14B 109.5
C7—C6—H6A 120.0 H14C—C14—H14B 109.5
C6—C7—C2 120.7 (2) C11—C14—H14A 109.5
C6—C7—H7A 119.7 H14C—C14—H14A 109.5
C2—C7—H7A 119.7 H14B—C14—H14A 109.5
C9—C8—C13 119.2 (2) C1—N1—C8 126.81 (15)
C9—C8—N1 117.82 (18) C1—N1—H1A 116.6
C13—C8—N1 122.9 (2) C8—N1—H1A 116.6
O1—C1—C2—C3 61.8 (3) C13—C8—C9—C10 −0.4 (3)
N1—C1—C2—C3 −118.8 (2) N1—C8—C9—C10 179.6 (2)
O1—C1—C2—C7 −115.4 (2) C8—C9—C10—C11 0.9 (4)
N1—C1—C2—C7 63.9 (2) C9—C10—C11—C12 −1.1 (4)
C7—C2—C3—C4 0.3 (3) C9—C10—C11—C14 178.3 (3)
C1—C2—C3—C4 −177.0 (2) C10—C11—C12—C13 0.8 (4)
C7—C2—C3—Cl1 −178.22 (16) C14—C11—C12—C13 −178.6 (2)
C1—C2—C3—Cl1 4.5 (3) C9—C8—C13—C12 0.0 (3)
C2—C3—C4—C5 1.1 (4) N1—C8—C13—C12 −180.0 (2)
Cl1—C3—C4—C5 179.6 (2) C11—C12—C13—C8 −0.2 (4)
C3—C4—C5—C6 −1.6 (4) O1—C1—N1—C8 −2.7 (3)
C4—C5—C6—C7 0.6 (4) C2—C1—N1—C8 178.00 (18)
C5—C6—C7—C2 0.9 (4) C9—C8—N1—C1 −144.4 (2)
C3—C2—C7—C6 −1.3 (3) C13—C8—N1—C1 35.6 (3)
C1—C2—C7—C6 176.0 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O1i 0.86 2.01 2.847 (2) 165.

Symmetry codes: (i) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5668).

References

  1. Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
  2. Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1–o3. [DOI] [PubMed]
  3. Brandenburg, K. (2002). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.
  5. Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2570.
  6. Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.
  7. Gowda, B. T., Paulus, H. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 711–720.
  8. Gowda, B. T. & Shetty, M. (2004). J. Phys. Org. Chem. 17, 848–864.
  9. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  10. Saeed, A., Arshad, M. & Simpson, J. (2010). Acta Cryst. E66, o2808–o2809. [DOI] [PMC free article] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Shetty, M. & Gowda, B. T. (2005). Z. Naturforsch. Teil A, 60, 113–120.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811041651/bt5668sup1.cif

e-67-o2940-sup1.cif (16.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811041651/bt5668Isup2.hkl

e-67-o2940-Isup2.hkl (159.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811041651/bt5668Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES