Abstract
In the title compound, C14H12ClNO, the ortho-Cl atom in the benzoyl ring is positioned syn to the C=O bond. The benzoyl and aniline benzene rings are tilted relative to each other by 82.8 (1)°. In the crystal, intermolecular N—H⋯O hydrogen bonds link the molecules into infinite chains running along the c-axis direction.
Related literature
For the preparation of the title compound, see: Gowda et al. (2003 ▶). For studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Bowes et al. (2003 ▶); Gowda et al. (2000 ▶); Saeed et al. (2010 ▶), on N-(aryl)-methanesulfonamides, see: Gowda et al. (2007 ▶), on N-(aryl)-arylsulfonamides, see: Shetty & Gowda (2005 ▶) and on N-chloro-arylsulfonamides, see: Gowda & Shetty (2004 ▶).
Experimental
Crystal data
C14H12ClNO
M r = 245.70
Monoclinic,
a = 20.2969 (14) Å
b = 7.1850 (5) Å
c = 8.8662 (5) Å
β = 93.750 (5)°
V = 1290.22 (15) Å3
Z = 4
Mo Kα radiation
μ = 0.28 mm−1
T = 293 K
0.92 × 0.28 × 0.07 mm
Data collection
Oxford Diffraction Xcalibur Ruby Gemini diffractometer
Absorption correction: analytical [CrysAlis RED (Oxford Diffraction, 2009 ▶), based on expressions derived from Clark & Reid (1995 ▶)] T min = 0.911, T max = 0.981
21209 measured reflections
3594 independent reflections
1870 reflections with I > 2σ(I)
R int = 0.038
Refinement
R[F 2 > 2σ(F 2)] = 0.057
wR(F 2) = 0.138
S = 1.03
3594 reflections
154 parameters
H-atom parameters constrained
Δρmax = 0.35 e Å−3
Δρmin = −0.42 e Å−3
Data collection: CrysAlis CCD (Oxford Diffraction, 2009 ▶); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009 ▶); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: DIAMOND (Brandenburg, 2002 ▶); software used to prepare material for publication: enCIFer (Allen et al., 2004 ▶).
Supplementary Material
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811041651/bt5668sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811041651/bt5668Isup2.hkl
Supplementary material file. DOI: 10.1107/S1600536811041651/bt5668Isup3.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N1—H1A⋯O1i | 0.86 | 2.01 | 2.847 (2) | 165 |
Symmetry code: (i)
.
Acknowledgments
PH and JK thank the VEGA Grant Agency of Slovak Ministry of Education 1/0679/11 and the Research and Development Agency of Slovakia (APVV-0202–10) for financial support and the Structural Funds, Interreg IIIA, for financial support in purchasing the diffractometer. VZR thanks the University Grants Commission, Government of India, New Delhi, for the award of an RFSMS research fellowship.
supplementary crystallographic information
Comment
The amide and sulfonamide moieties are the constituents of many biologically significant compounds. As part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Bowes et al., 2003; Gowda et al., 2000; Saeed et al., 2010), N-(aryl)-methanesulfonamides (Gowda et al., 2007), N-(aryl)-arylsulfonamides (Shetty & Gowda, 2005) and N-chloro-arylsulfonamides (Gowda & Shetty, 2004), in the present work, the crystal structure of 2-chloro-N-(4-methylphenyl)benzamide (I) has been determined (Fig.1).
In (I), the ortho-Cl atom in the benzoyl ring is positioned syn to the C=O bond and anti to the N–H bond of the C—NH—C(O)—C segment.
The central amide group –NHCO– is tilted to the anilino ring with the C9—C8—N1—C1 and C13—C8—N1—C1 torsion angles of -144.4 (2)° and 35.6 (3)°. The C3—C2—C1—N1 and C7—C2—C1—N1 torsion angles are -118.8 (2)° and 64.0 (3)°, respectively, while the C3—C2—C1—O1 and C7—C2—C1—O1 torsion angles are 61.8 (3)° and -115.4 (2)°, respectively. But the C2—C1—N1—C8 and C8—N1—C1—O1 torsion angles are 178.0 (2)° and -2.7 (3)°, respectively.
In the crystal structure, intermolecular N—H···O hydrogen bonds link the molecules into infinite chains running along the c-axis. Part of the crystal structure is shown in Fig. 2.
Experimental
The title compound was prepared according to the method described by Gowda et al. (2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Rod like colourless single crystals of the title compound used in X-ray diffraction studies were obtained by slow evaporation of an ethanol solution of the compound (0.5 g in 30 ml of ethanol) at room temperature.
Refinement
All hydrogen atoms were placed in calculated positions with C–H distances of 0.93Å (C-aromatic), 0.96Å (C-methyl), 0.86Å (N-H) and constrained to ride on their parent atoms. The Uiso(H) values were set at 1.2 Ueq (C-aromatic, N) and 1.5 Ueq(C-methyl).
Figures
Fig. 1.
Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
Fig. 2.
Part of the crystal structure of the title compound. Molecular chains are generated by N—H···O hydrogen bonds which are shown by dashed lines. H atoms not involved in intermolecular bonding have been omitted.
Crystal data
| C14H12ClNO | F(000) = 512 |
| Mr = 245.70 | Dx = 1.265 Mg m−3 |
| Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: -P 2ybc | Cell parameters from 3776 reflections |
| a = 20.2969 (14) Å | θ = 3.5–29.5° |
| b = 7.1850 (5) Å | µ = 0.28 mm−1 |
| c = 8.8662 (5) Å | T = 293 K |
| β = 93.750 (5)° | Rod, colorless |
| V = 1290.22 (15) Å3 | 0.92 × 0.28 × 0.07 mm |
| Z = 4 |
Data collection
| Oxford Diffraction Xcalibur Ruby Gemini diffractometer | 3594 independent reflections |
| Radiation source: Enhance (Mo) X-ray Source | 1870 reflections with I > 2σ(I) |
| graphite | Rint = 0.038 |
| Detector resolution: 10.4340 pixels mm-1 | θmax = 29.5°, θmin = 3.5° |
| ω scans | h = −28→28 |
| Absorption correction: analytical [CrysAlis RED (Oxford Diffraction, 2009), based on expressions derived from Clark & Reid (1995)] | k = −9→9 |
| Tmin = 0.911, Tmax = 0.981 | l = −12→12 |
| 21209 measured reflections |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.057 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.138 | H-atom parameters constrained |
| S = 1.03 | w = 1/[σ2(Fo2) + (0.0457P)2 + 0.4284P] where P = (Fo2 + 2Fc2)/3 |
| 3594 reflections | (Δ/σ)max < 0.001 |
| 154 parameters | Δρmax = 0.35 e Å−3 |
| 0 restraints | Δρmin = −0.42 e Å−3 |
Special details
| Experimental. CrysAlis RED (Oxford Diffraction, 2009) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived (Clark & Reid, 1995). |
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| C1 | 0.22887 (10) | 0.1405 (3) | 0.4095 (2) | 0.0490 (5) | |
| C2 | 0.17841 (10) | 0.0438 (3) | 0.30648 (19) | 0.0481 (5) | |
| C3 | 0.11200 (11) | 0.0438 (3) | 0.3330 (2) | 0.0568 (5) | |
| C4 | 0.06674 (12) | −0.0529 (4) | 0.2409 (3) | 0.0719 (6) | |
| H4A | 0.0221 | −0.0500 | 0.2589 | 0.086* | |
| C5 | 0.08826 (14) | −0.1534 (4) | 0.1225 (3) | 0.0820 (8) | |
| H5A | 0.0581 | −0.2215 | 0.0614 | 0.098* | |
| C6 | 0.15356 (14) | −0.1548 (4) | 0.0931 (3) | 0.0808 (8) | |
| H6A | 0.1675 | −0.2227 | 0.0118 | 0.097* | |
| C7 | 0.19841 (11) | −0.0560 (3) | 0.1836 (2) | 0.0616 (6) | |
| H7A | 0.2427 | −0.0559 | 0.1624 | 0.074* | |
| C8 | 0.31056 (9) | 0.3950 (3) | 0.4145 (2) | 0.0524 (5) | |
| C9 | 0.31260 (12) | 0.5767 (4) | 0.3668 (3) | 0.0693 (6) | |
| H9A | 0.2826 | 0.6178 | 0.2901 | 0.083* | |
| C10 | 0.35880 (13) | 0.6989 (4) | 0.4316 (3) | 0.0797 (7) | |
| H10A | 0.3590 | 0.8218 | 0.3987 | 0.096* | |
| C11 | 0.40448 (12) | 0.6430 (4) | 0.5435 (3) | 0.0757 (7) | |
| C12 | 0.40141 (11) | 0.4610 (5) | 0.5898 (3) | 0.0802 (8) | |
| H12A | 0.4315 | 0.4201 | 0.6664 | 0.096* | |
| C13 | 0.35533 (11) | 0.3354 (4) | 0.5273 (2) | 0.0668 (6) | |
| H13A | 0.3548 | 0.2130 | 0.5612 | 0.080* | |
| C14 | 0.45614 (15) | 0.7752 (5) | 0.6112 (3) | 0.1150 (12) | |
| H14C | 0.4833 | 0.7117 | 0.6876 | 0.138* | |
| H14B | 0.4349 | 0.8791 | 0.6556 | 0.138* | |
| H14A | 0.4831 | 0.8187 | 0.5335 | 0.138* | |
| N1 | 0.26167 (8) | 0.2768 (2) | 0.34391 (17) | 0.0544 (4) | |
| H1A | 0.2521 | 0.2947 | 0.2491 | 0.065* | |
| O1 | 0.23840 (8) | 0.0938 (2) | 0.54154 (14) | 0.0692 (5) | |
| Cl1 | 0.08462 (3) | 0.17186 (12) | 0.48200 (8) | 0.0953 (3) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| C1 | 0.0552 (11) | 0.0531 (12) | 0.0382 (10) | 0.0015 (10) | −0.0008 (8) | −0.0014 (9) |
| C2 | 0.0600 (12) | 0.0441 (11) | 0.0395 (10) | −0.0023 (9) | −0.0016 (8) | 0.0020 (9) |
| C3 | 0.0613 (13) | 0.0547 (13) | 0.0540 (11) | 0.0004 (10) | 0.0018 (10) | −0.0008 (10) |
| C4 | 0.0613 (14) | 0.0739 (16) | 0.0796 (16) | −0.0134 (12) | −0.0017 (12) | −0.0015 (14) |
| C5 | 0.0859 (19) | 0.0788 (18) | 0.0796 (17) | −0.0274 (15) | −0.0074 (14) | −0.0225 (14) |
| C6 | 0.096 (2) | 0.0765 (18) | 0.0701 (15) | −0.0153 (15) | 0.0047 (14) | −0.0292 (14) |
| C7 | 0.0690 (14) | 0.0618 (14) | 0.0541 (12) | −0.0077 (11) | 0.0048 (10) | −0.0105 (11) |
| C8 | 0.0491 (11) | 0.0684 (15) | 0.0396 (10) | −0.0058 (10) | 0.0023 (8) | −0.0047 (10) |
| C9 | 0.0732 (15) | 0.0747 (17) | 0.0586 (13) | −0.0149 (13) | −0.0072 (11) | 0.0063 (12) |
| C10 | 0.0863 (18) | 0.0782 (18) | 0.0751 (16) | −0.0268 (15) | 0.0082 (14) | −0.0070 (14) |
| C11 | 0.0594 (14) | 0.104 (2) | 0.0648 (15) | −0.0233 (14) | 0.0090 (12) | −0.0228 (15) |
| C12 | 0.0530 (14) | 0.116 (2) | 0.0688 (15) | 0.0004 (15) | −0.0146 (11) | −0.0135 (16) |
| C13 | 0.0573 (13) | 0.0780 (16) | 0.0631 (13) | 0.0035 (12) | −0.0111 (11) | −0.0031 (12) |
| C14 | 0.085 (2) | 0.156 (3) | 0.105 (2) | −0.051 (2) | 0.0105 (17) | −0.046 (2) |
| N1 | 0.0606 (10) | 0.0670 (11) | 0.0341 (8) | −0.0105 (9) | −0.0069 (7) | 0.0021 (8) |
| O1 | 0.0919 (11) | 0.0781 (11) | 0.0360 (7) | −0.0142 (9) | −0.0084 (7) | 0.0082 (7) |
| Cl1 | 0.0758 (5) | 0.1171 (6) | 0.0947 (5) | 0.0072 (4) | 0.0185 (4) | −0.0381 (4) |
Geometric parameters (Å, °)
| C1—O1 | 1.221 (2) | C8—C13 | 1.375 (3) |
| C1—N1 | 1.339 (2) | C8—N1 | 1.420 (2) |
| C1—C2 | 1.498 (3) | C9—C10 | 1.382 (3) |
| C2—C3 | 1.383 (3) | C9—H9A | 0.9300 |
| C2—C7 | 1.387 (3) | C10—C11 | 1.373 (4) |
| C3—C4 | 1.377 (3) | C10—H10A | 0.9300 |
| C3—Cl1 | 1.731 (2) | C11—C12 | 1.373 (4) |
| C4—C5 | 1.369 (3) | C11—C14 | 1.510 (3) |
| C4—H4A | 0.9300 | C12—C13 | 1.389 (3) |
| C5—C6 | 1.368 (4) | C12—H12A | 0.9300 |
| C5—H5A | 0.9300 | C13—H13A | 0.9300 |
| C6—C7 | 1.372 (3) | C14—H14C | 0.9600 |
| C6—H6A | 0.9300 | C14—H14B | 0.9600 |
| C7—H7A | 0.9300 | C14—H14A | 0.9600 |
| C8—C9 | 1.374 (3) | N1—H1A | 0.8600 |
| O1—C1—N1 | 124.43 (18) | C8—C9—C10 | 120.6 (2) |
| O1—C1—C2 | 121.11 (18) | C8—C9—H9A | 119.7 |
| N1—C1—C2 | 114.45 (15) | C10—C9—H9A | 119.7 |
| C3—C2—C7 | 118.16 (18) | C11—C10—C9 | 121.5 (3) |
| C3—C2—C1 | 122.10 (17) | C11—C10—H10A | 119.3 |
| C7—C2—C1 | 119.68 (18) | C9—C10—H10A | 119.3 |
| C4—C3—C2 | 121.3 (2) | C10—C11—C12 | 116.9 (2) |
| C4—C3—Cl1 | 119.06 (18) | C10—C11—C14 | 121.5 (3) |
| C2—C3—Cl1 | 119.65 (16) | C12—C11—C14 | 121.6 (3) |
| C5—C4—C3 | 119.1 (2) | C11—C12—C13 | 122.8 (2) |
| C5—C4—H4A | 120.4 | C11—C12—H12A | 118.6 |
| C3—C4—H4A | 120.4 | C13—C12—H12A | 118.6 |
| C6—C5—C4 | 120.8 (2) | C8—C13—C12 | 118.9 (3) |
| C6—C5—H5A | 119.6 | C8—C13—H13A | 120.5 |
| C4—C5—H5A | 119.6 | C12—C13—H13A | 120.5 |
| C5—C6—C7 | 119.9 (2) | C11—C14—H14C | 109.5 |
| C5—C6—H6A | 120.0 | C11—C14—H14B | 109.5 |
| C7—C6—H6A | 120.0 | H14C—C14—H14B | 109.5 |
| C6—C7—C2 | 120.7 (2) | C11—C14—H14A | 109.5 |
| C6—C7—H7A | 119.7 | H14C—C14—H14A | 109.5 |
| C2—C7—H7A | 119.7 | H14B—C14—H14A | 109.5 |
| C9—C8—C13 | 119.2 (2) | C1—N1—C8 | 126.81 (15) |
| C9—C8—N1 | 117.82 (18) | C1—N1—H1A | 116.6 |
| C13—C8—N1 | 122.9 (2) | C8—N1—H1A | 116.6 |
| O1—C1—C2—C3 | 61.8 (3) | C13—C8—C9—C10 | −0.4 (3) |
| N1—C1—C2—C3 | −118.8 (2) | N1—C8—C9—C10 | 179.6 (2) |
| O1—C1—C2—C7 | −115.4 (2) | C8—C9—C10—C11 | 0.9 (4) |
| N1—C1—C2—C7 | 63.9 (2) | C9—C10—C11—C12 | −1.1 (4) |
| C7—C2—C3—C4 | 0.3 (3) | C9—C10—C11—C14 | 178.3 (3) |
| C1—C2—C3—C4 | −177.0 (2) | C10—C11—C12—C13 | 0.8 (4) |
| C7—C2—C3—Cl1 | −178.22 (16) | C14—C11—C12—C13 | −178.6 (2) |
| C1—C2—C3—Cl1 | 4.5 (3) | C9—C8—C13—C12 | 0.0 (3) |
| C2—C3—C4—C5 | 1.1 (4) | N1—C8—C13—C12 | −180.0 (2) |
| Cl1—C3—C4—C5 | 179.6 (2) | C11—C12—C13—C8 | −0.2 (4) |
| C3—C4—C5—C6 | −1.6 (4) | O1—C1—N1—C8 | −2.7 (3) |
| C4—C5—C6—C7 | 0.6 (4) | C2—C1—N1—C8 | 178.00 (18) |
| C5—C6—C7—C2 | 0.9 (4) | C9—C8—N1—C1 | −144.4 (2) |
| C3—C2—C7—C6 | −1.3 (3) | C13—C8—N1—C1 | 35.6 (3) |
| C1—C2—C7—C6 | 176.0 (2) |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N1—H1A···O1i | 0.86 | 2.01 | 2.847 (2) | 165. |
Symmetry codes: (i) x, −y+1/2, z−1/2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5668).
References
- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
- Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1–o3. [DOI] [PubMed]
- Brandenburg, K. (2002). DIAMOND Crystal Impact GbR, Bonn, Germany.
- Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.
- Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2570.
- Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.
- Gowda, B. T., Paulus, H. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 711–720.
- Gowda, B. T. & Shetty, M. (2004). J. Phys. Org. Chem. 17, 848–864.
- Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
- Saeed, A., Arshad, M. & Simpson, J. (2010). Acta Cryst. E66, o2808–o2809. [DOI] [PMC free article] [PubMed]
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Shetty, M. & Gowda, B. T. (2005). Z. Naturforsch. Teil A, 60, 113–120.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811041651/bt5668sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811041651/bt5668Isup2.hkl
Supplementary material file. DOI: 10.1107/S1600536811041651/bt5668Isup3.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


