Abstract
The title compound, C9H12NO2 +·Cl−, is the hydrochloride of an N-substituted glycine derivative. The non-H atoms of the alkyl part of the molecule lie nearly in a plane (r.m.s. deviation of all fitted non-H atoms = 0.0142 Å). In the crystal structure, O—H⋯Cl, N—H⋯Cl and C—H⋯O hydrogen bonds involving both O atoms as well as C—H⋯Cl contacts connect the components of the title compound into a three-dimensional network.
Related literature
For the crystal structure of a palladium coordination compound featuring the ethyl ester of N-benzylglycine as a ligand, see: Freiesleben et al. (1995 ▶). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990 ▶); Bernstein et al. (1995 ▶).
Experimental
Crystal data
C9H12NO2 +·Cl−
M r = 201.65
Orthorhombic,
a = 5.0290 (7) Å
b = 5.4900 (8) Å
c = 36.254 (5) Å
V = 1000.9 (2) Å3
Z = 4
Mo Kα radiation
μ = 0.35 mm−1
T = 200 K
0.53 × 0.40 × 0.07 mm
Data collection
Bruker APEXII CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2008 ▶) T min = 0.585, T max = 1.000
7535 measured reflections
2376 independent reflections
2273 reflections with I > 2σ(I)
R int = 0.048
Refinement
R[F 2 > 2σ(F 2)] = 0.080
wR(F 2) = 0.177
S = 1.34
2376 reflections
125 parameters
H atoms treated by a mixture of independent and constrained refinement
Δρmax = 0.33 e Å−3
Δρmin = −0.57 e Å−3
Absolute structure: Flack (1983 ▶), 903 Friedel pairs
Flack parameter: 0.1 (3)
Data collection: APEX2 (Bruker, 2010 ▶); cell refinement: SAINT (Bruker, 2010 ▶); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEP-3 (Farrugia, 1997 ▶) and Mercury (Macrae et al., 2008 ▶); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009 ▶).
Supplementary Material
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811041638/aa2029sup1.cif
Supplementary material file. DOI: 10.1107/S1600536811041638/aa2029Isup2.cdx
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811041638/aa2029Isup3.hkl
Supplementary material file. DOI: 10.1107/S1600536811041638/aa2029Isup4.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O1—H1⋯Cl1i | 0.84 | 2.26 | 3.048 (3) | 157 |
| N1—H71⋯Cl1ii | 0.86 (6) | 2.31 (6) | 3.166 (5) | 178 (6) |
| N1—H72⋯Cl1 | 1.07 (6) | 2.15 (6) | 3.148 (5) | 154 (5) |
| C2—H2A⋯O1iii | 0.99 | 2.48 | 3.364 (7) | 148 |
| C2—H2B⋯O1iv | 0.99 | 2.50 | 3.383 (7) | 148 |
| C16—H16⋯Cl1ii | 0.95 | 2.78 | 3.654 (6) | 154 |
Symmetry codes: (i)
; (ii)
; (iii)
; (iv)
; (v)
.
Acknowledgments
The authors thank Dr Marc van der Vyver for helpful discussions.
supplementary crystallographic information
Comment
Amino acids play a major role in the metabolism of living creatures and are characterized by their omnipresence as well as their easy availability in both nature as well as industry. From a chemical viewpoint, their molecular set-up denotes them as potential chelate ligands whose denticity and charge can be influenced by simple variation of the pH value. Coordination compounds featuring amino acids in their ligand sphere might have interesting pharmaceutical properties, especially when keeping in mind that derivatization of the respective amino acids can be used for fine-tuning thermodynamic as well as kinetic characteristics of the compounds and the tailoring of secretion rates on grounds of hydrophilicity. In our continuous efforts in elucidating the rules guiding the formation of N,O-supported chelate ligands, we investigated the crystal structure of the title compound to enable comparative studies of metrical parameters in envisioned metal complexes. Information about the molecular and crystal structure of a palladium coordination compound featuring the ethyl ester of N-benzylglycine is apparent in the literature (Freiesleben et al., 1995).
Intracyclic C–C–C angles cover a range of 118.0 (5)–121.5 (6) ° with the smallest angle found on the substituted carbon atom and the biggest angle in ortho position to this atom. The non-hydrogen atoms of the alkyl part of the molecule are nearly in plane (r.m.s of all fitted non-hydrogen atoms = 0.0142 Å). The least-squares planes defined by these atoms on the one hand and the carbon atoms of the aromatic system on the other hand enclose an angle of 60.21 (21) ° (Fig. 1).
In the crystal structure, classical hydrogen bonds as well as C–H···O contacts and C–H···Cl contacts whose range falls by up to more than 0.2 Å below the sum of van-der-Waals radii of the respective atoms are observed. The classical hydrogen bonds are apparent between the nitrogen- and oxygen-bonded hydrogen atoms as donors and – exclusively – the chloride anion as acceptor While the C–H···O contacts are apparent between both hydrogen atoms of the amino acid's methylene group and the oxygen atom of the hydroxyl group, the C–H···Cl contacts stem from one of the aromatic system's hydrogen atoms in ortho position to the substituent. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for the classical hydrogen bonds is DDD on the unitary level while the C–H-supported contacts necessitate a DC11(4)C11(4) descriptor on the same level. The C–H···O contacts are present as antidromic chains. In total, the entities of the title compound are connected to a three-dimensional network. π-Stacking is not a prominent feature with the shortest intercentroid distance between two aromatic systems found at 5.029 (4) Å, the length of the a axis (Fig. 2).
The packing of the title compound in the crystal is shown in Figure 3.
Experimental
The compound was obtained commercially (Fluka). Crystals suitable for the X-ray diffraction study were obtained upon slow evaporation of an aqueous solution of the compound at ambient temperature.
Refinement
Carbon-bound H atoms were placed in calculated positions (C—H 0.95 Å for aromatic C atoms, C—H 0.99 Å for the methylene group) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The H atom of the hydroxyl group was allowed to rotate with a fixed angle around the C—O bond to best fit the experimental electron density (HFIX 147 in the SHELX program suite (Sheldrick, 2008)), with U(H) set to 1.5Ueq(O). Both nitrogen-bound H atoms were located on a difference Fourier map and refined freely.
Figures
Fig. 1.
The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).
Fig. 2.
Selected intermolecular contacts, viewed along [0 - 1 0]. Blue dashed lines indicate classical hydrogen bonds, green dashed lines C–H···O contacts. Symmetry operators: i -x + 1, y - 1/2, -z + 1/2; ii -x + 2, y - 1/2, -z + 1/2.
Fig. 3.

Molecular packing of the title compound, viewed along [0 1 0] (anisotropic displacement ellipsoids drawn at 50% probability level).
Crystal data
| C9H12NO2+·Cl− | F(000) = 424 |
| Mr = 201.65 | Dx = 1.338 Mg m−3 |
| Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71069 Å |
| Hall symbol: P 2ac 2ab | Cell parameters from 7358 reflections |
| a = 5.0290 (7) Å | θ = 2.3–28.5° |
| b = 5.4900 (8) Å | µ = 0.35 mm−1 |
| c = 36.254 (5) Å | T = 200 K |
| V = 1000.9 (2) Å3 | Platelet, colourless |
| Z = 4 | 0.53 × 0.40 × 0.07 mm |
Data collection
| Bruker APEXII CCD diffractometer | 2376 independent reflections |
| Radiation source: fine-focus sealed tube | 2273 reflections with I > 2σ(I) |
| graphite | Rint = 0.048 |
| φ and ω scans | θmax = 28.0°, θmin = 2.3° |
| Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −6→6 |
| Tmin = 0.585, Tmax = 1.000 | k = −7→6 |
| 7535 measured reflections | l = −47→47 |
Refinement
| Refinement on F2 | Secondary atom site location: difference Fourier map |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.080 | H atoms treated by a mixture of independent and constrained refinement |
| wR(F2) = 0.177 | w = 1/[σ2(Fo2) + (0.P)2 + 3.0055P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.34 | (Δ/σ)max < 0.001 |
| 2376 reflections | Δρmax = 0.33 e Å−3 |
| 125 parameters | Δρmin = −0.57 e Å−3 |
| 0 restraints | Absolute structure: Flack (1983), 903 Friedel pairs |
| Primary atom site location: structure-invariant direct methods | Flack parameter: 0.1 (3) |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| O1 | 0.8269 (6) | 0.7682 (8) | 0.26326 (8) | 0.0246 (7) | |
| H1 | 0.7157 | 0.7732 | 0.2805 | 0.037* | |
| O2 | 0.4647 (6) | 0.7619 (9) | 0.22798 (8) | 0.0277 (7) | |
| N1 | 0.7400 (7) | 0.7563 (9) | 0.16416 (10) | 0.0223 (7) | |
| H71 | 0.661 (12) | 0.894 (12) | 0.1630 (17) | 0.033* | |
| H72 | 0.585 (12) | 0.623 (10) | 0.1641 (16) | 0.033* | |
| C1 | 0.7017 (8) | 0.7659 (11) | 0.23163 (12) | 0.0225 (8) | |
| C2 | 0.8894 (8) | 0.7703 (11) | 0.19964 (11) | 0.0252 (9) | |
| H2A | 0.9953 | 0.9222 | 0.2003 | 0.030* | |
| H2B | 1.0136 | 0.6308 | 0.2014 | 0.030* | |
| C3 | 0.9244 (10) | 0.7587 (12) | 0.13153 (11) | 0.0314 (9) | |
| H3A | 1.0672 | 0.6371 | 0.1353 | 0.038* | |
| H3B | 1.0085 | 0.9212 | 0.1294 | 0.038* | |
| C11 | 0.7770 (10) | 0.7013 (9) | 0.09631 (13) | 0.0292 (11) | |
| C12 | 0.8329 (16) | 0.4968 (12) | 0.07646 (18) | 0.0483 (17) | |
| H12 | 0.9657 | 0.3870 | 0.0849 | 0.058* | |
| C13 | 0.6936 (18) | 0.4473 (14) | 0.04329 (18) | 0.056 (2) | |
| H13 | 0.7350 | 0.3046 | 0.0296 | 0.068* | |
| C14 | 0.5016 (16) | 0.6007 (14) | 0.03072 (17) | 0.0542 (19) | |
| H14 | 0.4067 | 0.5654 | 0.0087 | 0.065* | |
| C15 | 0.4480 (15) | 0.8087 (12) | 0.05065 (15) | 0.0494 (17) | |
| H15 | 0.3177 | 0.9202 | 0.0420 | 0.059* | |
| C16 | 0.5817 (13) | 0.8566 (11) | 0.08306 (15) | 0.0396 (13) | |
| H16 | 0.5390 | 0.9994 | 0.0966 | 0.048* | |
| Cl1 | 0.4309 (2) | 0.2582 (2) | 0.16068 (3) | 0.0287 (3) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| O1 | 0.0225 (13) | 0.0257 (17) | 0.0256 (14) | 0.0029 (17) | −0.0031 (11) | 0.0055 (18) |
| O2 | 0.0164 (13) | 0.0295 (16) | 0.0370 (16) | −0.0029 (19) | −0.0019 (12) | −0.001 (2) |
| N1 | 0.0199 (16) | 0.0205 (16) | 0.0266 (16) | −0.0063 (19) | −0.0008 (13) | 0.000 (2) |
| C1 | 0.0207 (18) | 0.012 (2) | 0.035 (2) | −0.002 (2) | −0.0030 (16) | 0.005 (2) |
| C2 | 0.0186 (19) | 0.027 (2) | 0.030 (2) | 0.011 (2) | −0.0074 (16) | −0.001 (2) |
| C3 | 0.026 (2) | 0.035 (2) | 0.034 (2) | 0.002 (4) | 0.0066 (19) | 0.002 (3) |
| C11 | 0.030 (2) | 0.031 (3) | 0.027 (2) | −0.008 (2) | 0.0090 (19) | 0.0008 (19) |
| C12 | 0.069 (5) | 0.034 (3) | 0.042 (3) | 0.007 (3) | 0.008 (3) | −0.002 (3) |
| C13 | 0.082 (6) | 0.049 (4) | 0.039 (3) | −0.007 (4) | 0.012 (4) | −0.013 (3) |
| C14 | 0.063 (5) | 0.069 (5) | 0.031 (3) | −0.019 (4) | −0.002 (3) | −0.010 (3) |
| C15 | 0.052 (4) | 0.064 (5) | 0.032 (3) | −0.002 (4) | −0.007 (3) | −0.003 (3) |
| C16 | 0.040 (3) | 0.048 (3) | 0.031 (3) | −0.001 (3) | 0.002 (3) | −0.005 (2) |
| Cl1 | 0.0357 (5) | 0.0192 (4) | 0.0312 (5) | −0.0014 (7) | 0.0024 (5) | −0.0005 (6) |
Geometric parameters (Å, °)
| O1—C1 | 1.308 (5) | C3—H3B | 0.9900 |
| O1—H1 | 0.8400 | C11—C12 | 1.363 (8) |
| O2—C1 | 1.199 (5) | C11—C16 | 1.386 (8) |
| N1—C2 | 1.492 (5) | C12—C13 | 1.418 (10) |
| N1—C3 | 1.503 (5) | C12—H12 | 0.9500 |
| N1—H71 | 0.86 (6) | C13—C14 | 1.360 (11) |
| N1—H72 | 1.07 (6) | C13—H13 | 0.9500 |
| C1—C2 | 1.496 (6) | C14—C15 | 1.378 (9) |
| C2—H2A | 0.9900 | C14—H14 | 0.9500 |
| C2—H2B | 0.9900 | C15—C16 | 1.379 (8) |
| C3—C11 | 1.510 (6) | C15—H15 | 0.9500 |
| C3—H3A | 0.9900 | C16—H16 | 0.9500 |
| C1—O1—H1 | 109.5 | C11—C3—H3B | 109.4 |
| C2—N1—C3 | 111.5 (3) | H3A—C3—H3B | 108.0 |
| C2—N1—H71 | 103 (4) | C12—C11—C16 | 118.0 (5) |
| C3—N1—H71 | 104 (4) | C12—C11—C3 | 121.1 (5) |
| C2—N1—H72 | 114 (3) | C16—C11—C3 | 120.8 (5) |
| C3—N1—H72 | 117 (3) | C11—C12—C13 | 120.2 (7) |
| H71—N1—H72 | 105 (5) | C11—C12—H12 | 119.9 |
| O2—C1—O1 | 125.1 (4) | C13—C12—H12 | 119.9 |
| O2—C1—C2 | 122.8 (4) | C14—C13—C12 | 121.1 (7) |
| O1—C1—C2 | 112.1 (4) | C14—C13—H13 | 119.5 |
| N1—C2—C1 | 110.5 (3) | C12—C13—H13 | 119.5 |
| N1—C2—H2A | 109.6 | C13—C14—C15 | 118.5 (6) |
| C1—C2—H2A | 109.6 | C13—C14—H14 | 120.8 |
| N1—C2—H2B | 109.6 | C15—C14—H14 | 120.8 |
| C1—C2—H2B | 109.6 | C14—C15—C16 | 120.6 (7) |
| H2A—C2—H2B | 108.1 | C14—C15—H15 | 119.7 |
| N1—C3—C11 | 111.1 (4) | C16—C15—H15 | 119.7 |
| N1—C3—H3A | 109.4 | C15—C16—C11 | 121.5 (6) |
| C11—C3—H3A | 109.4 | C15—C16—H16 | 119.2 |
| N1—C3—H3B | 109.4 | C11—C16—H16 | 119.2 |
| C3—N1—C2—C1 | −179.6 (5) | C3—C11—C12—C13 | −179.5 (6) |
| O2—C1—C2—N1 | −2.8 (9) | C11—C12—C13—C14 | −0.4 (11) |
| O1—C1—C2—N1 | 177.5 (5) | C12—C13—C14—C15 | 1.1 (11) |
| C2—N1—C3—C11 | 170.2 (5) | C13—C14—C15—C16 | −1.6 (10) |
| N1—C3—C11—C12 | −115.9 (6) | C14—C15—C16—C11 | 1.3 (10) |
| N1—C3—C11—C16 | 64.6 (7) | C12—C11—C16—C15 | −0.5 (9) |
| C16—C11—C12—C13 | 0.0 (9) | C3—C11—C16—C15 | 179.0 (5) |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| O1—H1···Cl1i | 0.84 | 2.26 | 3.048 (3) | 157. |
| N1—H71···Cl1ii | 0.86 (6) | 2.31 (6) | 3.166 (5) | 178 (6) |
| N1—H72···Cl1 | 1.07 (6) | 2.15 (6) | 3.148 (5) | 154 (5) |
| C2—H2A···O1iii | 0.99 | 2.48 | 3.364 (7) | 148. |
| C2—H2B···O1iv | 0.99 | 2.50 | 3.383 (7) | 148. |
| C2—H2B···O2v | 0.99 | 2.57 | 3.070 (5) | 111. |
| C16—H16···Cl1ii | 0.95 | 2.78 | 3.654 (6) | 154. |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) x, y+1, z; (iii) −x+2, y+1/2, −z+1/2; (iv) −x+2, y−1/2, −z+1/2; (v) x+1, y, z.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AA2029).
References
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2008). SADABS Bruker Inc., Madison, Wisconsin, USA.
- Bruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, USA.
- Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Flack, H. D. (1983). Acta Cryst. A39, 876–881.
- Freiesleben, D., Polborn, K., Robl, C., Sünkel, K. & Beck, W. (1995). Can. J. Chem. 73, 1164–1174.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811041638/aa2029sup1.cif
Supplementary material file. DOI: 10.1107/S1600536811041638/aa2029Isup2.cdx
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811041638/aa2029Isup3.hkl
Supplementary material file. DOI: 10.1107/S1600536811041638/aa2029Isup4.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


