Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 12;67(Pt 11):o2947. doi: 10.1107/S1600536811041638

1-Carb­oxy-3-phenyl­propan-2-aminium chloride

Eric Hosten a, Thomas Gerber a, Richard Betz a,*
PMCID: PMC3247357  PMID: 22219975

Abstract

The title compound, C9H12NO2 +·Cl, is the hydro­chloride of an N-substituted glycine derivative. The non-H atoms of the alkyl part of the mol­ecule lie nearly in a plane (r.m.s. deviation of all fitted non-H atoms = 0.0142 Å). In the crystal structure, O—H⋯Cl, N—H⋯Cl and C—H⋯O hydrogen bonds involving both O atoms as well as C—H⋯Cl contacts connect the components of the title compound into a three-dimensional network.

Related literature

For the crystal structure of a palladium coordination compound featuring the ethyl ester of N-benzyl­glycine as a ligand, see: Freiesleben et al. (1995). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).graphic file with name e-67-o2947-scheme1.jpg

Experimental

Crystal data

  • C9H12NO2 +·Cl

  • M r = 201.65

  • Orthorhombic, Inline graphic

  • a = 5.0290 (7) Å

  • b = 5.4900 (8) Å

  • c = 36.254 (5) Å

  • V = 1000.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 200 K

  • 0.53 × 0.40 × 0.07 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.585, T max = 1.000

  • 7535 measured reflections

  • 2376 independent reflections

  • 2273 reflections with I > 2σ(I)

  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.080

  • wR(F 2) = 0.177

  • S = 1.34

  • 2376 reflections

  • 125 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.57 e Å−3

  • Absolute structure: Flack (1983), 903 Friedel pairs

  • Flack parameter: 0.1 (3)

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811041638/aa2029sup1.cif

e-67-o2947-sup1.cif (14.4KB, cif)

Supplementary material file. DOI: 10.1107/S1600536811041638/aa2029Isup2.cdx

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811041638/aa2029Isup3.hkl

e-67-o2947-Isup3.hkl (116.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811041638/aa2029Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯Cl1i 0.84 2.26 3.048 (3) 157
N1—H71⋯Cl1ii 0.86 (6) 2.31 (6) 3.166 (5) 178 (6)
N1—H72⋯Cl1 1.07 (6) 2.15 (6) 3.148 (5) 154 (5)
C2—H2A⋯O1iii 0.99 2.48 3.364 (7) 148
C2—H2B⋯O1iv 0.99 2.50 3.383 (7) 148
C16—H16⋯Cl1ii 0.95 2.78 3.654 (6) 154

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

The authors thank Dr Marc van der Vyver for helpful discussions.

supplementary crystallographic information

Comment

Amino acids play a major role in the metabolism of living creatures and are characterized by their omnipresence as well as their easy availability in both nature as well as industry. From a chemical viewpoint, their molecular set-up denotes them as potential chelate ligands whose denticity and charge can be influenced by simple variation of the pH value. Coordination compounds featuring amino acids in their ligand sphere might have interesting pharmaceutical properties, especially when keeping in mind that derivatization of the respective amino acids can be used for fine-tuning thermodynamic as well as kinetic characteristics of the compounds and the tailoring of secretion rates on grounds of hydrophilicity. In our continuous efforts in elucidating the rules guiding the formation of N,O-supported chelate ligands, we investigated the crystal structure of the title compound to enable comparative studies of metrical parameters in envisioned metal complexes. Information about the molecular and crystal structure of a palladium coordination compound featuring the ethyl ester of N-benzylglycine is apparent in the literature (Freiesleben et al., 1995).

Intracyclic C–C–C angles cover a range of 118.0 (5)–121.5 (6) ° with the smallest angle found on the substituted carbon atom and the biggest angle in ortho position to this atom. The non-hydrogen atoms of the alkyl part of the molecule are nearly in plane (r.m.s of all fitted non-hydrogen atoms = 0.0142 Å). The least-squares planes defined by these atoms on the one hand and the carbon atoms of the aromatic system on the other hand enclose an angle of 60.21 (21) ° (Fig. 1).

In the crystal structure, classical hydrogen bonds as well as C–H···O contacts and C–H···Cl contacts whose range falls by up to more than 0.2 Å below the sum of van-der-Waals radii of the respective atoms are observed. The classical hydrogen bonds are apparent between the nitrogen- and oxygen-bonded hydrogen atoms as donors and – exclusively – the chloride anion as acceptor While the C–H···O contacts are apparent between both hydrogen atoms of the amino acid's methylene group and the oxygen atom of the hydroxyl group, the C–H···Cl contacts stem from one of the aromatic system's hydrogen atoms in ortho position to the substituent. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for the classical hydrogen bonds is DDD on the unitary level while the C–H-supported contacts necessitate a DC11(4)C11(4) descriptor on the same level. The C–H···O contacts are present as antidromic chains. In total, the entities of the title compound are connected to a three-dimensional network. π-Stacking is not a prominent feature with the shortest intercentroid distance between two aromatic systems found at 5.029 (4) Å, the length of the a axis (Fig. 2).

The packing of the title compound in the crystal is shown in Figure 3.

Experimental

The compound was obtained commercially (Fluka). Crystals suitable for the X-ray diffraction study were obtained upon slow evaporation of an aqueous solution of the compound at ambient temperature.

Refinement

Carbon-bound H atoms were placed in calculated positions (C—H 0.95 Å for aromatic C atoms, C—H 0.99 Å for the methylene group) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The H atom of the hydroxyl group was allowed to rotate with a fixed angle around the C—O bond to best fit the experimental electron density (HFIX 147 in the SHELX program suite (Sheldrick, 2008)), with U(H) set to 1.5Ueq(O). Both nitrogen-bound H atoms were located on a difference Fourier map and refined freely.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).

Fig. 2.

Fig. 2.

Selected intermolecular contacts, viewed along [0 - 1 0]. Blue dashed lines indicate classical hydrogen bonds, green dashed lines C–H···O contacts. Symmetry operators: i -x + 1, y - 1/2, -z + 1/2; ii -x + 2, y - 1/2, -z + 1/2.

Fig. 3.

Fig. 3.

Molecular packing of the title compound, viewed along [0 1 0] (anisotropic displacement ellipsoids drawn at 50% probability level).

Crystal data

C9H12NO2+·Cl F(000) = 424
Mr = 201.65 Dx = 1.338 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71069 Å
Hall symbol: P 2ac 2ab Cell parameters from 7358 reflections
a = 5.0290 (7) Å θ = 2.3–28.5°
b = 5.4900 (8) Å µ = 0.35 mm1
c = 36.254 (5) Å T = 200 K
V = 1000.9 (2) Å3 Platelet, colourless
Z = 4 0.53 × 0.40 × 0.07 mm

Data collection

Bruker APEXII CCD diffractometer 2376 independent reflections
Radiation source: fine-focus sealed tube 2273 reflections with I > 2σ(I)
graphite Rint = 0.048
φ and ω scans θmax = 28.0°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −6→6
Tmin = 0.585, Tmax = 1.000 k = −7→6
7535 measured reflections l = −47→47

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.080 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.177 w = 1/[σ2(Fo2) + (0.P)2 + 3.0055P] where P = (Fo2 + 2Fc2)/3
S = 1.34 (Δ/σ)max < 0.001
2376 reflections Δρmax = 0.33 e Å3
125 parameters Δρmin = −0.57 e Å3
0 restraints Absolute structure: Flack (1983), 903 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.1 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.8269 (6) 0.7682 (8) 0.26326 (8) 0.0246 (7)
H1 0.7157 0.7732 0.2805 0.037*
O2 0.4647 (6) 0.7619 (9) 0.22798 (8) 0.0277 (7)
N1 0.7400 (7) 0.7563 (9) 0.16416 (10) 0.0223 (7)
H71 0.661 (12) 0.894 (12) 0.1630 (17) 0.033*
H72 0.585 (12) 0.623 (10) 0.1641 (16) 0.033*
C1 0.7017 (8) 0.7659 (11) 0.23163 (12) 0.0225 (8)
C2 0.8894 (8) 0.7703 (11) 0.19964 (11) 0.0252 (9)
H2A 0.9953 0.9222 0.2003 0.030*
H2B 1.0136 0.6308 0.2014 0.030*
C3 0.9244 (10) 0.7587 (12) 0.13153 (11) 0.0314 (9)
H3A 1.0672 0.6371 0.1353 0.038*
H3B 1.0085 0.9212 0.1294 0.038*
C11 0.7770 (10) 0.7013 (9) 0.09631 (13) 0.0292 (11)
C12 0.8329 (16) 0.4968 (12) 0.07646 (18) 0.0483 (17)
H12 0.9657 0.3870 0.0849 0.058*
C13 0.6936 (18) 0.4473 (14) 0.04329 (18) 0.056 (2)
H13 0.7350 0.3046 0.0296 0.068*
C14 0.5016 (16) 0.6007 (14) 0.03072 (17) 0.0542 (19)
H14 0.4067 0.5654 0.0087 0.065*
C15 0.4480 (15) 0.8087 (12) 0.05065 (15) 0.0494 (17)
H15 0.3177 0.9202 0.0420 0.059*
C16 0.5817 (13) 0.8566 (11) 0.08306 (15) 0.0396 (13)
H16 0.5390 0.9994 0.0966 0.048*
Cl1 0.4309 (2) 0.2582 (2) 0.16068 (3) 0.0287 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0225 (13) 0.0257 (17) 0.0256 (14) 0.0029 (17) −0.0031 (11) 0.0055 (18)
O2 0.0164 (13) 0.0295 (16) 0.0370 (16) −0.0029 (19) −0.0019 (12) −0.001 (2)
N1 0.0199 (16) 0.0205 (16) 0.0266 (16) −0.0063 (19) −0.0008 (13) 0.000 (2)
C1 0.0207 (18) 0.012 (2) 0.035 (2) −0.002 (2) −0.0030 (16) 0.005 (2)
C2 0.0186 (19) 0.027 (2) 0.030 (2) 0.011 (2) −0.0074 (16) −0.001 (2)
C3 0.026 (2) 0.035 (2) 0.034 (2) 0.002 (4) 0.0066 (19) 0.002 (3)
C11 0.030 (2) 0.031 (3) 0.027 (2) −0.008 (2) 0.0090 (19) 0.0008 (19)
C12 0.069 (5) 0.034 (3) 0.042 (3) 0.007 (3) 0.008 (3) −0.002 (3)
C13 0.082 (6) 0.049 (4) 0.039 (3) −0.007 (4) 0.012 (4) −0.013 (3)
C14 0.063 (5) 0.069 (5) 0.031 (3) −0.019 (4) −0.002 (3) −0.010 (3)
C15 0.052 (4) 0.064 (5) 0.032 (3) −0.002 (4) −0.007 (3) −0.003 (3)
C16 0.040 (3) 0.048 (3) 0.031 (3) −0.001 (3) 0.002 (3) −0.005 (2)
Cl1 0.0357 (5) 0.0192 (4) 0.0312 (5) −0.0014 (7) 0.0024 (5) −0.0005 (6)

Geometric parameters (Å, °)

O1—C1 1.308 (5) C3—H3B 0.9900
O1—H1 0.8400 C11—C12 1.363 (8)
O2—C1 1.199 (5) C11—C16 1.386 (8)
N1—C2 1.492 (5) C12—C13 1.418 (10)
N1—C3 1.503 (5) C12—H12 0.9500
N1—H71 0.86 (6) C13—C14 1.360 (11)
N1—H72 1.07 (6) C13—H13 0.9500
C1—C2 1.496 (6) C14—C15 1.378 (9)
C2—H2A 0.9900 C14—H14 0.9500
C2—H2B 0.9900 C15—C16 1.379 (8)
C3—C11 1.510 (6) C15—H15 0.9500
C3—H3A 0.9900 C16—H16 0.9500
C1—O1—H1 109.5 C11—C3—H3B 109.4
C2—N1—C3 111.5 (3) H3A—C3—H3B 108.0
C2—N1—H71 103 (4) C12—C11—C16 118.0 (5)
C3—N1—H71 104 (4) C12—C11—C3 121.1 (5)
C2—N1—H72 114 (3) C16—C11—C3 120.8 (5)
C3—N1—H72 117 (3) C11—C12—C13 120.2 (7)
H71—N1—H72 105 (5) C11—C12—H12 119.9
O2—C1—O1 125.1 (4) C13—C12—H12 119.9
O2—C1—C2 122.8 (4) C14—C13—C12 121.1 (7)
O1—C1—C2 112.1 (4) C14—C13—H13 119.5
N1—C2—C1 110.5 (3) C12—C13—H13 119.5
N1—C2—H2A 109.6 C13—C14—C15 118.5 (6)
C1—C2—H2A 109.6 C13—C14—H14 120.8
N1—C2—H2B 109.6 C15—C14—H14 120.8
C1—C2—H2B 109.6 C14—C15—C16 120.6 (7)
H2A—C2—H2B 108.1 C14—C15—H15 119.7
N1—C3—C11 111.1 (4) C16—C15—H15 119.7
N1—C3—H3A 109.4 C15—C16—C11 121.5 (6)
C11—C3—H3A 109.4 C15—C16—H16 119.2
N1—C3—H3B 109.4 C11—C16—H16 119.2
C3—N1—C2—C1 −179.6 (5) C3—C11—C12—C13 −179.5 (6)
O2—C1—C2—N1 −2.8 (9) C11—C12—C13—C14 −0.4 (11)
O1—C1—C2—N1 177.5 (5) C12—C13—C14—C15 1.1 (11)
C2—N1—C3—C11 170.2 (5) C13—C14—C15—C16 −1.6 (10)
N1—C3—C11—C12 −115.9 (6) C14—C15—C16—C11 1.3 (10)
N1—C3—C11—C16 64.6 (7) C12—C11—C16—C15 −0.5 (9)
C16—C11—C12—C13 0.0 (9) C3—C11—C16—C15 179.0 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···Cl1i 0.84 2.26 3.048 (3) 157.
N1—H71···Cl1ii 0.86 (6) 2.31 (6) 3.166 (5) 178 (6)
N1—H72···Cl1 1.07 (6) 2.15 (6) 3.148 (5) 154 (5)
C2—H2A···O1iii 0.99 2.48 3.364 (7) 148.
C2—H2B···O1iv 0.99 2.50 3.383 (7) 148.
C2—H2B···O2v 0.99 2.57 3.070 (5) 111.
C16—H16···Cl1ii 0.95 2.78 3.654 (6) 154.

Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) x, y+1, z; (iii) −x+2, y+1/2, −z+1/2; (iv) −x+2, y−1/2, −z+1/2; (v) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AA2029).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (2008). SADABS Bruker Inc., Madison, Wisconsin, USA.
  4. Bruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, USA.
  5. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  6. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  7. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  8. Freiesleben, D., Polborn, K., Robl, C., Sünkel, K. & Beck, W. (1995). Can. J. Chem. 73, 1164–1174.
  9. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811041638/aa2029sup1.cif

e-67-o2947-sup1.cif (14.4KB, cif)

Supplementary material file. DOI: 10.1107/S1600536811041638/aa2029Isup2.cdx

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811041638/aa2029Isup3.hkl

e-67-o2947-Isup3.hkl (116.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811041638/aa2029Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES