Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 12;67(Pt 11):o2948–o2949. doi: 10.1107/S1600536811041390

Thailandepsin A

Cheng Wang a,*, Yi-Qiang Cheng a,*
PMCID: PMC3247358  PMID: 22219976

Abstract

Thailandepsin A [systematic name: (E)-(1S,5S,6R,9S,20R)-6-[(2S)-butan-2-yl]-5-hy­droxy-20-[2-(meth­yl­sulfan­yl)eth­yl]-2-oxa-11,12-dithia-7,19,22-triaza­bicyclo­[7.7.6]docosa-15-ene-3,8,18,21-tetra­one], C23H37N3O6S3, is a newly reported [Wang et al. (2011). J. Nat. Prod. doi:10.1021/np200324x] bicyclic depsipeptide that has potent histone deacetyl­ase inhibitory activity and broad-spectrum anti­proliferative activity. The absolute configuration of thailandepsin A has been determined from the anomalous dispersion and the stereochemistry of all chiral C atoms. Intra­molecular N—H⋯O and N—H⋯S hydrogen bonds occur. Inter­molecular N—H⋯O and O—H⋯O hydrogen bonds are observed in the crystal structure.

Related literature

For general background to histone deacetyl­ase (HDAC) inhibitors as a new class of anti­cancer agents, see: FDA (2010); Furumai et al. (2002); Grant et al. (2010); Khan & La Thangue (2008); Mann et al. (2007); Ueda et al. (1994). For related structures, see: Shigematsu et al. (1994). For geometric data, see: Chou & Blinn (1997). For the biological activity of the title compound, see: Wang et al. (2011).graphic file with name e-67-o2948-scheme1.jpg

Experimental

Crystal data

  • C23H37N3O6S3

  • M r = 547.74

  • Orthorhombic, Inline graphic

  • a = 12.7747 (3) Å

  • b = 13.2926 (3) Å

  • c = 15.4218 (4) Å

  • V = 2618.76 (11) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.96 mm−1

  • T = 100 K

  • 0.45 × 0.42 × 0.38 mm

Data collection

  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007) T min = 0.352, T max = 0.403

  • 34598 measured reflections

  • 4990 independent reflections

  • 4981 reflections with I > 2σ(I)

  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.027

  • wR(F 2) = 0.071

  • S = 1.05

  • 4990 reflections

  • 326 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.36 e Å−3

  • Absolute structure: Flack (1983), 2102 Friedel pairs

  • Flack parameter: 0.000 (9)

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811041390/zl2411sup1.cif

e-67-o2948-sup1.cif (25.4KB, cif)

Supplementary material file. DOI: 10.1107/S1600536811041390/zl2411Isup2.cdx

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811041390/zl2411Isup3.hkl

e-67-o2948-Isup3.hkl (244.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811041390/zl2411Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O5i 0.84 (1) 1.90 (1) 2.7394 (15) 176 (2)
N1—H1⋯O6 0.88 (1) 2.06 (1) 2.9203 (17) 166 (2)
N2—H2⋯S2 0.88 (1) 2.83 (2) 3.2491 (13) 111 (2)
N3—H3⋯O4ii 0.88 (1) 2.33 (1) 3.1534 (16) 155 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

Support for this work was obtained from a Research Growth Initiative Award from the University of Wisconsin–Milwaukee and NIH/NCI grant R01 CA 152212 (both to Y-QC). The authors thank Lara C. Spencer and Ilia A. Guzei (University of Wisconsin-Madison Department of Chemistry Crystallography Facility) for collecting the crystallographic data.

supplementary crystallographic information

Comment

With the FDA approval of both SAHA (Vorinostat) and FK228 (Romidepsin) for the treatment of cutaneous T-cell lymphoma (FDA, 2010; Mann et al., 2007), histone deacetylase (HDAC) inhibitors have been in the spotlight in recent years as a new class of anticancer agents (Grant et al., 2010; Khan & La Thangue, 2008). FK228, a natural product produced by Chromobacterium violaceum No. 968 (Ueda et al., 1994), represents a family of natural products that contain a signature disulfide bond that is known or presumed to mediate a novel mode of anticancer action in which a reduced thiol group "warhead" chelates a Zn2+ in the catalytic center of Class I and Class II HDACs thereby inhibiting the enzyme activities (Furumai et al., 2002; Wang et al., 2011). The crystal structure of FK228 was reported in 1994 (Shigematsu et al., 1994).

Thailandepsin A is a natural analogue of FK228 newly discovered from Burkholderia thailandensis E264 by a genomics-guided approach; it has potent histone deacetylase inhibitory activities and broad-spectrum antiproliferative activities (Wang et al., 2011). The chemical structure of thailandepsin A was established by a combination of spectroscopic analyses, chemical derivatization and degradation. Here we report the crystal structure of thailandepsin A.

Thailandepsin A is a bicyclic depsipeptide and consists of four building blocks, D-cysteine (D-Cys), D-methionine (D-Met), 4-amino-3-hydroxy-5-methylheptanoic acid (Ahhp, derived from an isoleucine and an acetate unit) and 3-hydroxy-7-mercapto-4-heptenoic acid (Acyl, derived from a cysteine and two acetate units). The primary structure of thailandepsin A is D-Met-D-Cys-Ahhp-Acyl. X-ray crystallographic analysis indicates that the skeleton of thailandepsin A consists of a [7,7,6] 22-membered ring adopting an uncommon cage-shape that includes a 15-membered macrocyclic lactone and a 15-membered ring and a signature disulfide bond. The bridge ring is almost perpendicular to the main ring and the dihedral angle of these two least-squares planes is 77.7 (1)°. The side chains of methionine and isoleucine have less strain and can freely rotate on the single bonds. In order to obtain minimum energy positions, the alkyl groups arrange so on the molecular skeleton that they point away from each other.

The absolute configurations at C2, C8, C11 and C13 are S and the absolute configurations at C12 and 18 are R as established based on the results of anomalous dispersion. The geometric isomerism of the double bond in the Acyl component is determined as E. The backbone moiety from the carboxyl group of Acyl through methionine and cysteine to the amine group of Ahhp, (Acyl)-CO1—Met2—Cys3—NH4-(Ahhp), forms a peculiar secondary structure, a type I' β-turn, and the value of Ψ and Φ are 57.26 (17)°, 29.76 (18)°, 95.49 (16)° and -18.11 (19)° (Chou & Blinn, 1997). There are two intramolecular and two intermolecular hydrogen bonds present (Table 1, Fig. 1 and 2).

Experimental

Thailandepsin A was purified from the fermentation broth of B. thailandensis E264 as described earlier (Wang et al., 2011). Pure thailandepsin A was dissolved in methanol and block-like crystals were obtained after evaporation of the solvent at room temperature.

Refinement

All hydrogen atoms attached to the carbon atoms were placed in geometrically idealized positions (C—H = 0.98, 0.99 and 1.00 Å on the primary, secondary and tertiary aliphatic C atoms respectively, 0.95 Å on aromatic C). The H atoms were refined as riding, with isotropic displacement coefficients of Uiso(H) = 1.5Ueq(C) for methyl groups or 1.2Ueq(C) otherwise. The hydrogen atoms attached to N and O were located in difference maps and refined independently with restraints and constraints. The H atoms on N atoms were restrained to have N—H distances of 0.880 (1) Å and their Uiso values were constrained as equal to 1.2 times the Ueq of their carrier atoms. The H atom on O was restrained to have an O—H distance of 0.840 (1) Å and the Uiso value was assigned as equal to 1.5 times the Ueq of the oxygen atom.

Figures

Fig. 1.

Fig. 1.

The molecular structure of thailandepsin A with displacement ellipsoids shown at the 50% probability level. For clarity, all H atoms attached to carbon atoms are omitted. Intramolecular hydrogen bonds are shown as dashed lines.

Fig. 2.

Fig. 2.

A packing diagram of thailandepsin A, viewed along the c axis. For clarity, all H atoms attached to carbon atoms are omitted. The dashed lines represent hydrogen bonds.

Crystal data

C23H37N3O6S3 F(000) = 1168
Mr = 547.74 Dx = 1.389 Mg m3
Orthorhombic, P212121 Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ac 2ab Cell parameters from 9793 reflections
a = 12.7747 (3) Å θ = 3.5–71.2°
b = 13.2926 (3) Å µ = 2.96 mm1
c = 15.4218 (4) Å T = 100 K
V = 2618.76 (11) Å3 Block, colourless
Z = 4 0.45 × 0.42 × 0.38 mm

Data collection

Bruker SMART APEXII area-detector diffractometer 4990 independent reflections
Radiation source: fine-focus sealed tube 4981 reflections with I > 2σ(I)
graphite Rint = 0.025
0.50° ω and 0.5 ° φ scans θmax = 71.7°, θmin = 4.4°
Absorption correction: multi-scan (SADABS; Bruker, 2007) h = −15→14
Tmin = 0.352, Tmax = 0.403 k = −15→16
34598 measured reflections l = −18→17

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.071 w = 1/[σ2(Fo2) + (0.051P)2 + 0.7593P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.001
4990 reflections Δρmax = 0.35 e Å3
326 parameters Δρmin = −0.36 e Å3
4 restraints Absolute structure: Flack (1983), ???? Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.000 (9)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 1.10290 (3) −0.14637 (3) 0.38774 (2) 0.02184 (10)
S2 0.97356 (3) −0.08216 (3) 0.33328 (2) 0.01709 (9)
S3 0.91337 (3) 0.40012 (3) 0.40152 (3) 0.02362 (10)
O1 1.08885 (10) −0.18335 (9) 0.67591 (8) 0.0223 (3)
O2 0.77376 (8) −0.09984 (8) 0.61157 (7) 0.0141 (2)
O3 0.69383 (9) −0.08629 (9) 0.74184 (7) 0.0190 (2)
O4 0.85790 (9) −0.16775 (8) 0.88174 (7) 0.0140 (2)
H4 0.8699 (17) −0.2254 (7) 0.9016 (13) 0.021*
O5 1.11125 (9) 0.14154 (8) 0.55597 (7) 0.0179 (2)
O6 0.86120 (9) 0.12479 (8) 0.64747 (7) 0.0158 (2)
N1 0.99720 (10) −0.04020 (10) 0.70173 (8) 0.0128 (3)
H1 0.9652 (14) 0.0126 (9) 0.6798 (12) 0.015*
N2 1.00458 (10) 0.00984 (9) 0.52676 (8) 0.0121 (2)
H2 0.9444 (8) −0.0082 (14) 0.5038 (12) 0.014*
N3 0.83857 (10) 0.13784 (10) 0.50282 (8) 0.0138 (3)
H3 0.7955 (12) 0.1335 (15) 0.4584 (8) 0.017*
C1 1.05386 (12) −0.10227 (12) 0.65205 (10) 0.0143 (3)
C2 1.07489 (12) −0.06840 (11) 0.55727 (9) 0.0131 (3)
H2A 1.1482 −0.0423 0.5537 0.016*
C3 1.06714 (13) −0.16258 (12) 0.50086 (10) 0.0174 (3)
H3A 0.9943 −0.1877 0.5034 0.021*
H3B 1.1128 −0.2151 0.5262 0.021*
C4 0.88346 (14) −0.18723 (13) 0.31638 (11) 0.0202 (3)
H4A 0.8850 −0.2082 0.2548 0.024*
H4B 0.9052 −0.2453 0.3524 0.024*
C5 0.77251 (12) −0.15466 (13) 0.34132 (11) 0.0190 (3)
H5A 0.7542 −0.0927 0.3091 0.023*
H5B 0.7225 −0.2079 0.3240 0.023*
C6 0.76184 (12) −0.13526 (13) 0.43705 (10) 0.0173 (3)
H6 0.7980 −0.1793 0.4752 0.021*
C7 0.70632 (12) −0.06202 (12) 0.47258 (10) 0.0162 (3)
H7 0.6720 −0.0170 0.4341 0.019*
C8 0.69224 (12) −0.04303 (12) 0.56827 (10) 0.0154 (3)
H8 0.6227 −0.0704 0.5865 0.018*
C9 0.76158 (12) −0.12126 (11) 0.69723 (10) 0.0136 (3)
C10 0.84280 (12) −0.19799 (11) 0.72498 (10) 0.0138 (3)
H10A 0.8877 −0.2133 0.6743 0.017*
H10B 0.8059 −0.2608 0.7409 0.017*
C11 0.91409 (12) −0.16801 (11) 0.80094 (9) 0.0127 (3)
H11 0.9724 −0.2180 0.8051 0.015*
C12 0.96190 (12) −0.06200 (11) 0.79096 (9) 0.0125 (3)
H12 0.9029 −0.0143 0.8019 0.015*
C13 1.04416 (12) −0.03790 (11) 0.86101 (10) 0.0146 (3)
H13 1.0124 −0.0559 0.9182 0.017*
C14 1.06664 (13) 0.07539 (12) 0.86315 (10) 0.0184 (3)
H14A 1.1138 0.0927 0.8144 0.022*
H14B 1.0002 0.1125 0.8548 0.022*
C15 1.11702 (14) 0.10927 (13) 0.94810 (11) 0.0222 (3)
H15A 1.0677 0.0988 0.9960 0.033*
H15B 1.1350 0.1808 0.9443 0.033*
H15C 1.1807 0.0700 0.9585 0.033*
C16 1.14602 (12) −0.09806 (13) 0.85283 (10) 0.0184 (3)
H16A 1.1848 −0.0752 0.8017 0.028*
H16B 1.1296 −0.1697 0.8467 0.028*
H16C 1.1888 −0.0878 0.9048 0.028*
C17 1.02739 (12) 0.10824 (11) 0.52881 (9) 0.0134 (3)
C18 0.94399 (12) 0.17890 (11) 0.49209 (10) 0.0138 (3)
H18 0.9480 0.2442 0.5241 0.017*
C19 0.80478 (12) 0.11430 (11) 0.58346 (10) 0.0141 (3)
C20 0.69604 (12) 0.06994 (12) 0.59060 (10) 0.0160 (3)
H20A 0.6486 0.1068 0.5510 0.019*
H20B 0.6701 0.0797 0.6505 0.019*
C21 0.96752 (13) 0.19916 (11) 0.39575 (10) 0.0158 (3)
H21A 1.0409 0.2224 0.3904 0.019*
H21B 0.9613 0.1351 0.3634 0.019*
C22 0.89580 (13) 0.27705 (12) 0.35353 (10) 0.0168 (3)
H22A 0.8220 0.2558 0.3605 0.020*
H22B 0.9112 0.2807 0.2907 0.020*
C23 0.82077 (15) 0.46899 (14) 0.33643 (12) 0.0250 (4)
H23A 0.8190 0.5393 0.3554 0.037*
H23B 0.7510 0.4392 0.3431 0.037*
H23C 0.8419 0.4659 0.2754 0.037*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.01829 (19) 0.0340 (2) 0.01321 (18) 0.00771 (17) −0.00022 (14) −0.00696 (15)
S2 0.01714 (18) 0.02111 (19) 0.01302 (16) 0.00009 (15) −0.00063 (14) −0.00078 (14)
S3 0.0279 (2) 0.0207 (2) 0.0222 (2) 0.00109 (16) −0.00648 (16) 0.00032 (16)
O1 0.0286 (6) 0.0210 (6) 0.0172 (6) 0.0118 (5) 0.0048 (5) 0.0045 (5)
O2 0.0140 (5) 0.0171 (5) 0.0112 (5) 0.0017 (4) 0.0001 (4) 0.0034 (4)
O3 0.0199 (5) 0.0216 (6) 0.0156 (5) 0.0040 (5) 0.0037 (4) 0.0017 (5)
O4 0.0190 (5) 0.0131 (5) 0.0098 (5) 0.0019 (4) 0.0019 (4) 0.0018 (4)
O5 0.0167 (5) 0.0166 (5) 0.0205 (5) −0.0020 (4) −0.0032 (5) −0.0018 (5)
O6 0.0197 (5) 0.0159 (5) 0.0119 (5) 0.0022 (4) 0.0004 (4) −0.0001 (4)
N1 0.0161 (6) 0.0129 (6) 0.0093 (6) 0.0026 (5) −0.0002 (5) 0.0029 (5)
N2 0.0122 (6) 0.0137 (6) 0.0103 (6) −0.0004 (5) −0.0003 (4) −0.0003 (5)
N3 0.0139 (6) 0.0155 (6) 0.0121 (6) 0.0005 (5) −0.0008 (5) 0.0010 (5)
C1 0.0145 (7) 0.0156 (7) 0.0129 (7) 0.0005 (6) 0.0002 (5) 0.0013 (6)
C2 0.0146 (7) 0.0142 (7) 0.0104 (6) 0.0017 (6) 0.0001 (5) −0.0004 (6)
C3 0.0227 (7) 0.0153 (7) 0.0142 (7) 0.0037 (6) −0.0015 (6) −0.0014 (6)
C4 0.0243 (8) 0.0191 (7) 0.0170 (8) −0.0014 (7) −0.0020 (7) −0.0043 (6)
C5 0.0184 (8) 0.0213 (8) 0.0172 (8) −0.0030 (6) −0.0031 (6) −0.0015 (6)
C6 0.0167 (7) 0.0196 (7) 0.0156 (7) −0.0045 (6) −0.0035 (6) 0.0037 (6)
C7 0.0150 (7) 0.0194 (7) 0.0143 (7) −0.0019 (6) −0.0042 (6) 0.0040 (6)
C8 0.0126 (7) 0.0182 (7) 0.0154 (7) 0.0001 (6) −0.0011 (6) 0.0038 (6)
C9 0.0165 (7) 0.0135 (7) 0.0107 (6) −0.0032 (6) −0.0007 (6) 0.0002 (5)
C10 0.0183 (7) 0.0118 (7) 0.0111 (7) 0.0006 (6) −0.0002 (6) −0.0001 (5)
C11 0.0157 (7) 0.0136 (7) 0.0087 (6) 0.0015 (6) 0.0001 (6) 0.0010 (5)
C12 0.0152 (7) 0.0133 (6) 0.0089 (6) 0.0014 (6) 0.0010 (6) 0.0009 (5)
C13 0.0176 (7) 0.0156 (7) 0.0106 (7) 0.0009 (6) −0.0008 (6) 0.0000 (5)
C14 0.0249 (8) 0.0155 (7) 0.0148 (7) −0.0014 (6) −0.0034 (6) 0.0017 (6)
C15 0.0287 (9) 0.0189 (8) 0.0190 (8) −0.0025 (7) −0.0021 (7) −0.0013 (6)
C16 0.0161 (7) 0.0208 (8) 0.0182 (8) 0.0011 (6) −0.0020 (6) 0.0011 (6)
C17 0.0164 (7) 0.0158 (7) 0.0079 (6) −0.0003 (6) 0.0022 (6) −0.0004 (5)
C18 0.0153 (7) 0.0133 (7) 0.0127 (7) −0.0014 (6) 0.0000 (6) 0.0000 (6)
C19 0.0160 (7) 0.0119 (7) 0.0144 (7) 0.0037 (6) 0.0017 (6) 0.0005 (6)
C20 0.0154 (7) 0.0184 (7) 0.0142 (7) 0.0036 (6) 0.0020 (6) 0.0026 (6)
C21 0.0192 (7) 0.0154 (7) 0.0128 (7) −0.0013 (6) 0.0012 (6) 0.0013 (6)
C22 0.0210 (8) 0.0171 (7) 0.0122 (7) −0.0029 (6) −0.0026 (6) 0.0015 (5)
C23 0.0259 (8) 0.0281 (9) 0.0209 (8) 0.0081 (7) 0.0006 (7) 0.0028 (7)

Geometric parameters (Å, °)

S1—C3 1.8162 (17) C8—C20 1.541 (2)
S1—S2 2.0406 (6) C8—H8 1.0000
S2—C4 1.8285 (17) C9—C10 1.517 (2)
S3—C23 1.8014 (18) C10—C11 1.536 (2)
S3—C22 1.8095 (16) C10—H10A 0.9900
O1—C1 1.223 (2) C10—H10B 0.9900
O2—C9 1.3602 (18) C11—C12 1.543 (2)
O2—C8 1.4494 (18) C11—H11 1.0000
O3—C9 1.199 (2) C12—C13 1.541 (2)
O4—C11 1.4380 (17) C12—H12 1.0000
O4—H4 0.8399 (10) C13—C16 1.533 (2)
O5—C17 1.233 (2) C13—C14 1.533 (2)
O6—C19 1.230 (2) C13—H13 1.0000
N1—C1 1.338 (2) C14—C15 1.528 (2)
N1—C12 1.4769 (18) C14—H14A 0.9900
N1—H1 0.8797 (10) C14—H14B 0.9900
N2—C17 1.340 (2) C15—H15A 0.9800
N2—C2 1.4524 (19) C15—H15B 0.9800
N2—H2 0.8798 (10) C15—H15C 0.9800
N3—C19 1.353 (2) C16—H16A 0.9800
N3—C18 1.4624 (18) C16—H16B 0.9800
N3—H3 0.8799 (10) C16—H16C 0.9800
C1—C2 1.553 (2) C17—C18 1.529 (2)
C2—C3 1.528 (2) C18—C21 1.540 (2)
C2—H2A 1.0000 C18—H18 1.0000
C3—H3A 0.9900 C19—C20 1.513 (2)
C3—H3B 0.9900 C20—H20A 0.9900
C4—C5 1.531 (2) C20—H20B 0.9900
C4—H4A 0.9900 C21—C22 1.528 (2)
C4—H4B 0.9900 C21—H21A 0.9900
C5—C6 1.505 (2) C21—H21B 0.9900
C5—H5A 0.9900 C22—H22A 0.9900
C5—H5B 0.9900 C22—H22B 0.9900
C6—C7 1.323 (2) C23—H23A 0.9800
C6—H6 0.9500 C23—H23B 0.9800
C7—C8 1.508 (2) C23—H23C 0.9800
C7—H7 0.9500
C3—S1—S2 103.96 (6) C12—C11—H11 108.5
C4—S2—S1 104.41 (6) N1—C12—C13 113.84 (12)
C23—S3—C22 98.63 (8) N1—C12—C11 113.14 (12)
C9—O2—C8 118.31 (12) C13—C12—C11 112.95 (12)
C11—O4—H4 102.9 (15) N1—C12—H12 105.3
C1—N1—C12 125.27 (13) C13—C12—H12 105.3
C1—N1—H1 121.5 (13) C11—C12—H12 105.3
C12—N1—H1 111.9 (13) C16—C13—C14 110.81 (13)
C17—N2—C2 123.82 (13) C16—C13—C12 114.39 (13)
C17—N2—H2 117.7 (13) C14—C13—C12 110.31 (12)
C2—N2—H2 118.4 (13) C16—C13—H13 107.0
C19—N3—C18 118.95 (13) C14—C13—H13 107.0
C19—N3—H3 120.1 (13) C12—C13—H13 107.0
C18—N3—H3 120.8 (13) C15—C14—C13 112.76 (13)
O1—C1—N1 124.65 (14) C15—C14—H14A 109.0
O1—C1—C2 118.38 (14) C13—C14—H14A 109.0
N1—C1—C2 116.97 (13) C15—C14—H14B 109.0
N2—C2—C3 111.24 (12) C13—C14—H14B 109.0
N2—C2—C1 113.92 (12) H14A—C14—H14B 107.8
C3—C2—C1 106.69 (12) C14—C15—H15A 109.5
N2—C2—H2A 108.3 C14—C15—H15B 109.5
C3—C2—H2A 108.3 H15A—C15—H15B 109.5
C1—C2—H2A 108.3 C14—C15—H15C 109.5
C2—C3—S1 115.69 (11) H15A—C15—H15C 109.5
C2—C3—H3A 108.4 H15B—C15—H15C 109.5
S1—C3—H3A 108.4 C13—C16—H16A 109.5
C2—C3—H3B 108.4 C13—C16—H16B 109.5
S1—C3—H3B 108.4 H16A—C16—H16B 109.5
H3A—C3—H3B 107.4 C13—C16—H16C 109.5
C5—C4—S2 109.33 (11) H16A—C16—H16C 109.5
C5—C4—H4A 109.8 H16B—C16—H16C 109.5
S2—C4—H4A 109.8 O5—C17—N2 123.19 (14)
C5—C4—H4B 109.8 O5—C17—C18 120.72 (13)
S2—C4—H4B 109.8 N2—C17—C18 116.05 (13)
H4A—C4—H4B 108.3 N3—C18—C17 111.75 (12)
C6—C5—C4 112.26 (13) N3—C18—C21 110.75 (12)
C6—C5—H5A 109.2 C17—C18—C21 109.20 (12)
C4—C5—H5A 109.2 N3—C18—H18 108.4
C6—C5—H5B 109.2 C17—C18—H18 108.4
C4—C5—H5B 109.2 C21—C18—H18 108.4
H5A—C5—H5B 107.9 O6—C19—N3 121.62 (14)
C7—C6—C5 125.51 (15) O6—C19—C20 121.58 (14)
C7—C6—H6 117.2 N3—C19—C20 116.73 (14)
C5—C6—H6 117.2 C19—C20—C8 113.10 (13)
C6—C7—C8 126.32 (14) C19—C20—H20A 109.0
C6—C7—H7 116.8 C8—C20—H20A 109.0
C8—C7—H7 116.8 C19—C20—H20B 109.0
O2—C8—C7 106.14 (12) C8—C20—H20B 109.0
O2—C8—C20 112.45 (12) H20A—C20—H20B 107.8
C7—C8—C20 112.21 (13) C22—C21—C18 114.37 (13)
O2—C8—H8 108.6 C22—C21—H21A 108.7
C7—C8—H8 108.6 C18—C21—H21A 108.7
C20—C8—H8 108.6 C22—C21—H21B 108.7
O3—C9—O2 123.95 (14) C18—C21—H21B 108.7
O3—C9—C10 126.34 (14) H21A—C21—H21B 107.6
O2—C9—C10 109.66 (12) C21—C22—S3 111.34 (11)
C9—C10—C11 116.50 (12) C21—C22—H22A 109.4
C9—C10—H10A 108.2 S3—C22—H22A 109.4
C11—C10—H10A 108.2 C21—C22—H22B 109.4
C9—C10—H10B 108.2 S3—C22—H22B 109.4
C11—C10—H10B 108.2 H22A—C22—H22B 108.0
H10A—C10—H10B 107.3 S3—C23—H23A 109.5
O4—C11—C10 111.44 (12) S3—C23—H23B 109.5
O4—C11—C12 106.37 (11) H23A—C23—H23B 109.5
C10—C11—C12 113.29 (12) S3—C23—H23C 109.5
O4—C11—H11 108.5 H23A—C23—H23C 109.5
C10—C11—H11 108.5 H23B—C23—H23C 109.5
C3—S1—S2—C4 −79.45 (8) O4—C11—C12—N1 −164.12 (12)
C12—N1—C1—O1 −4.2 (2) C10—C11—C12—N1 −41.37 (17)
C12—N1—C1—C2 175.04 (13) O4—C11—C12—C13 64.71 (15)
C17—N2—C2—C3 −143.88 (14) C10—C11—C12—C13 −172.53 (12)
C17—N2—C2—C1 95.49 (16) N1—C12—C13—C16 −61.27 (17)
O1—C1—C2—N2 161.20 (14) C11—C12—C13—C16 69.54 (16)
N1—C1—C2—N2 −18.11 (19) N1—C12—C13—C14 64.44 (16)
O1—C1—C2—C3 38.06 (19) C11—C12—C13—C14 −164.75 (12)
N1—C1—C2—C3 −141.25 (14) C16—C13—C14—C15 −71.70 (17)
N2—C2—C3—S1 61.75 (15) C12—C13—C14—C15 160.60 (13)
C1—C2—C3—S1 −173.45 (10) C2—N2—C17—O5 0.9 (2)
S2—S1—C3—C2 −79.42 (12) C2—N2—C17—C18 178.86 (12)
S1—S2—C4—C5 138.27 (10) C19—N3—C18—C17 57.26 (17)
S2—C4—C5—C6 −67.15 (16) C19—N3—C18—C21 179.24 (13)
C4—C5—C6—C7 141.33 (16) O5—C17—C18—N3 −152.25 (13)
C5—C6—C7—C8 178.20 (15) N2—C17—C18—N3 29.76 (18)
C9—O2—C8—C7 −160.50 (12) O5—C17—C18—C21 84.87 (16)
C9—O2—C8—C20 76.45 (16) N2—C17—C18—C21 −93.11 (15)
C6—C7—C8—O2 16.4 (2) C18—N3—C19—O6 −1.4 (2)
C6—C7—C8—C20 139.65 (16) C18—N3—C19—C20 −178.68 (12)
C8—O2—C9—O3 −9.1 (2) O6—C19—C20—C8 −97.53 (17)
C8—O2—C9—C10 168.50 (12) N3—C19—C20—C8 79.73 (16)
O3—C9—C10—C11 −58.7 (2) O2—C8—C20—C19 47.62 (17)
O2—C9—C10—C11 123.75 (13) C7—C8—C20—C19 −71.95 (17)
C9—C10—C11—O4 71.69 (16) N3—C18—C21—C22 62.21 (16)
C9—C10—C11—C12 −48.21 (17) C17—C18—C21—C22 −174.33 (13)
C1—N1—C12—C13 84.41 (18) C18—C21—C22—S3 64.71 (15)
C1—N1—C12—C11 −46.31 (19) C23—S3—C22—C21 179.27 (12)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O4—H4···O5i 0.84 (1) 1.90 (1) 2.7394 (15) 176 (2)
N1—H1···O6 0.88 (1) 2.06 (1) 2.9203 (17) 166.(2)
N2—H2···S2 0.88 (1) 2.83 (2) 3.2491 (13) 111.(2)
N3—H3···O4ii 0.88 (1) 2.33 (1) 3.1534 (16) 155.(2)

Symmetry codes: (i) −x+2, y−1/2, −z+3/2; (ii) −x+3/2, −y, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2411).

References

  1. Bruker (2007). APEX2, SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Chou, K. C. & Blinn, J. R. (1997). J. Protein Chem. 16, 575–595. [DOI] [PubMed]
  3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  4. FDA (2010). J. Natl Cancer Inst. 102, 219.
  5. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  6. Furumai, R., Matsuyama, A., Kobashi, N., Lee, K. H., Nishiyama, M., Nakajima, H., Tanaka, A., Komatsu, Y., Nishino, N., Yoshida, M. & Horinouchi, S. (2002). Cancer Res. 62, 4916–4921. [PubMed]
  7. Grant, C., Rahman, F., Piekarz, R., Peer, C., Frye, R., Robey, R. W., Gardner, E. R., Figg, W. D. & Bates, S. E. (2010). Expert Rev. Anticancer Ther. 10, 997–1008. [DOI] [PMC free article] [PubMed]
  8. Khan, O. & La Thangue, N. B. (2008). Nat. Clin. Pract. Oncol. 5, 714–726. [DOI] [PubMed]
  9. Mann, B. S., Johnson, J. R., Cohen, M. H., Justice, R. & Pazdur, R. (2007). The Oncologist, 12, 1247–1252. [DOI] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Shigematsu, N., Ueda, H., Takase, S., Tanaka, H., Yamamoto, K. & Tada, T. (1994). J. Antibiot. (Tokyo), 47, 311–314. [DOI] [PubMed]
  12. Ueda, H., Nakajima, H., Hori, Y., Fujita, T., Nishimura, M., Goto, T. & Okuhara, M. (1994). J. Antibiot. (Tokyo), 47, 301–310. [DOI] [PubMed]
  13. Wang, C., Henkes, L. M., Doughty, L. B., He, M., Wang, D., Meyer-Almes, F. J. & Cheng, Y. Q. (2011). J. Nat. Prod. doi:10.1021/np200324x. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811041390/zl2411sup1.cif

e-67-o2948-sup1.cif (25.4KB, cif)

Supplementary material file. DOI: 10.1107/S1600536811041390/zl2411Isup2.cdx

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811041390/zl2411Isup3.hkl

e-67-o2948-Isup3.hkl (244.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811041390/zl2411Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES