Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 12;67(Pt 11):o2954. doi: 10.1107/S1600536811041614

4,4′,6,6′-Tetra-tert-butyl-2,2′-[butane-1,4-diylbis(nitrilo­methanylyl­idene)]diphenol

Jia Ti Tee a, Norbani Abdullah a, Hamid Khaledi a,*
PMCID: PMC3247362  PMID: 22219980

Abstract

The title compound, C34H52N2O2, is centrosymmetric, the mid-point of the central C—C bond being located on an inversion centre. Intra­molecular O—H⋯N and weak C—H⋯O hydrogen bonds are observed, but no significant inter­molecular inter­actions occur in the crystal structure.

Related literature

For structures of some metal complexes of the title Schiff base, see: Doyle et al. (2007); Keizer et al. (2002a ,b ).graphic file with name e-67-o2954-scheme1.jpg

Experimental

Crystal data

  • C34H52N2O2

  • M r = 520.78

  • Monoclinic, Inline graphic

  • a = 19.1255 (4) Å

  • b = 9.5702 (2) Å

  • c = 8.6312 (1) Å

  • β = 90.383 (1)°

  • V = 1579.78 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 100 K

  • 0.26 × 0.15 × 0.06 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.983, T max = 0.996

  • 14602 measured reflections

  • 3631 independent reflections

  • 3039 reflections with I > 2σ(I)

  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.114

  • S = 1.03

  • 3631 reflections

  • 181 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811041614/xu5350sup1.cif

e-67-o2954-sup1.cif (22.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811041614/xu5350Isup2.hkl

e-67-o2954-Isup2.hkl (178KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.927 (16) 1.735 (17) 2.5840 (13) 150.8 (14)
C8—H8B⋯O1 0.98 2.29 2.9546 (16) 125
C9—H9A⋯O1 0.98 2.44 3.0720 (15) 122

Acknowledgments

Financial support from the University of Malaya is highly appreciated (PPP grant No. PS342/2009 C)

supplementary crystallographic information

Comment

The title Schiff base has been displayed ambidentate ligation behavior towards metal ions (Doyle et al., 2007; Keizer et al., 2002a,b). Herein, wish to report the crystal structure of the free ligand, obtained through the condensation reaction of 3,5-di-tert-butyl-2-hydroxybenzaldehyde and 1,4-diaminobutane. The molecule lies across a crystallographic inversion centre. The imino group is almost coplanar with the phenyl ring [dihedral angle = 3.00 (13)] and adopts an E configuration. The hydroxyl group is engaged in an intramolecular O—H···N hydrogen bond with the imine group. Moreover, it acts as an acceptor in two intramolecular C—H···O hydrogen bonds (Table 1). The structure does not display any significant intermolecular interactions.

Experimental

3,5-Di-tert-butyl-2-hydroxybenzaldehyde (5.86 g, 25 mmol) was dissolved in methanol (50 ml) in a round-bottomed flask fitted with a reflux condenser. The solution was heated, followed by portionwise addition of 1,4-diaminobutane (1.10 g; 12.5 mmol). The pale yellow solution formed was then gently refluxed for 3 h. The product obtained on cooling was recrystallized from ethanol at room temperature to give X-ray quality crystals of the title compound.

Refinement

The C-bound H atoms were placed at calculated positions and refined as riding on their parent atoms, with C–H = 0.95 (aryl), 0.98 (methyl) and 0.99 (methylene) Å. The O-bound H atom was located in a difference Fourier map and refined freely. For all H atoms Uiso(H) were set to 1.2–1.5Ueq(carrier atom).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound with displacement ellipsoids at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.

Crystal data

C34H52N2O2 F(000) = 572
Mr = 520.78 Dx = 1.095 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4857 reflections
a = 19.1255 (4) Å θ = 2.4–30.3°
b = 9.5702 (2) Å µ = 0.07 mm1
c = 8.6312 (1) Å T = 100 K
β = 90.383 (1)° Plate, yellow
V = 1579.78 (5) Å3 0.26 × 0.15 × 0.06 mm
Z = 2

Data collection

Bruker APEXII CCD diffractometer 3631 independent reflections
Radiation source: fine-focus sealed tube 3039 reflections with I > 2σ(I)
graphite Rint = 0.024
φ and ω scans θmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −24→24
Tmin = 0.983, Tmax = 0.996 k = −12→12
14602 measured reflections l = −11→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0533P)2 + 0.5079P] where P = (Fo2 + 2Fc2)/3
3631 reflections (Δ/σ)max < 0.001
181 parameters Δρmax = 0.30 e Å3
0 restraints Δρmin = −0.16 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.38365 (4) 0.98230 (9) 0.47339 (10) 0.0267 (2)
H1 0.4145 (8) 0.9488 (17) 0.3998 (19) 0.040*
N1 0.43079 (5) 0.86964 (11) 0.22286 (12) 0.0276 (2)
C1 0.31824 (6) 0.96886 (11) 0.41401 (12) 0.0198 (2)
C2 0.26044 (6) 1.01998 (11) 0.49629 (12) 0.0193 (2)
C3 0.19476 (6) 1.00283 (11) 0.42796 (12) 0.0203 (2)
H3 0.1553 1.0373 0.4824 0.024*
C4 0.18292 (6) 0.93820 (12) 0.28429 (12) 0.0197 (2)
C5 0.24129 (6) 0.88907 (11) 0.20702 (12) 0.0196 (2)
H5 0.2353 0.8443 0.1096 0.024*
C6 0.30834 (6) 0.90361 (11) 0.26843 (12) 0.0194 (2)
C7 0.26927 (7) 1.09122 (12) 0.65518 (12) 0.0230 (3)
C8 0.31935 (8) 1.21639 (13) 0.64423 (15) 0.0348 (3)
H8A 0.3004 1.2849 0.5707 0.052*
H8B 0.3651 1.1842 0.6085 0.052*
H8C 0.3244 1.2599 0.7465 0.052*
C9 0.29756 (7) 0.98400 (12) 0.77258 (13) 0.0254 (3)
H9A 0.3430 0.9492 0.7377 0.038*
H9B 0.2647 0.9058 0.7807 0.038*
H9C 0.3030 1.0286 0.8741 0.038*
C10 0.19963 (7) 1.14567 (14) 0.71697 (14) 0.0323 (3)
H10A 0.2074 1.1915 0.8172 0.049*
H10B 0.1672 1.0674 0.7300 0.049*
H10C 0.1797 1.2130 0.6434 0.049*
C11 0.10988 (6) 0.92199 (13) 0.21236 (13) 0.0246 (3)
C12 0.09358 (7) 0.76642 (15) 0.19055 (17) 0.0357 (3)
H12A 0.0932 0.7200 0.2918 0.053*
H12B 0.1294 0.7237 0.1252 0.053*
H12C 0.0477 0.7560 0.1407 0.053*
C13 0.10838 (7) 0.99276 (15) 0.05301 (15) 0.0339 (3)
H13A 0.0630 0.9757 0.0029 0.051*
H13B 0.1457 0.9542 −0.0114 0.051*
H13C 0.1154 1.0936 0.0656 0.051*
C14 0.05296 (7) 0.9870 (2) 0.31222 (17) 0.0449 (4)
H14A 0.0526 0.9413 0.4138 0.067*
H14B 0.0074 0.9745 0.2615 0.067*
H14C 0.0623 1.0870 0.3255 0.067*
C15 0.36766 (6) 0.85464 (12) 0.17746 (13) 0.0225 (2)
H15 0.3589 0.8100 0.0810 0.027*
C16 0.48707 (6) 0.82786 (14) 0.11850 (16) 0.0312 (3)
H16A 0.4676 0.7714 0.0324 0.037*
H16B 0.5214 0.7697 0.1755 0.037*
C17 0.52336 (6) 0.95676 (14) 0.05349 (15) 0.0294 (3)
H17A 0.5653 0.9268 −0.0045 0.035*
H17B 0.5393 1.0163 0.1407 0.035*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0244 (4) 0.0311 (5) 0.0246 (4) −0.0036 (4) −0.0030 (3) −0.0032 (3)
N1 0.0240 (5) 0.0289 (6) 0.0299 (5) −0.0012 (4) 0.0047 (4) −0.0003 (4)
C1 0.0244 (6) 0.0152 (5) 0.0196 (5) −0.0026 (4) −0.0019 (4) 0.0027 (4)
C2 0.0299 (6) 0.0126 (5) 0.0155 (5) 0.0009 (4) −0.0011 (4) 0.0015 (4)
C3 0.0273 (6) 0.0173 (5) 0.0163 (5) 0.0051 (4) 0.0019 (4) 0.0010 (4)
C4 0.0241 (6) 0.0183 (5) 0.0167 (5) 0.0011 (4) −0.0012 (4) 0.0022 (4)
C5 0.0271 (6) 0.0169 (5) 0.0149 (5) −0.0014 (4) 0.0005 (4) −0.0011 (4)
C6 0.0245 (6) 0.0150 (5) 0.0188 (5) −0.0013 (4) 0.0023 (4) 0.0014 (4)
C7 0.0365 (7) 0.0163 (5) 0.0163 (5) 0.0007 (5) −0.0025 (4) −0.0011 (4)
C8 0.0597 (9) 0.0205 (6) 0.0241 (6) −0.0090 (6) −0.0021 (6) −0.0033 (5)
C9 0.0379 (7) 0.0204 (6) 0.0178 (5) 0.0002 (5) −0.0058 (5) −0.0004 (4)
C10 0.0474 (8) 0.0301 (7) 0.0195 (5) 0.0118 (6) −0.0011 (5) −0.0064 (5)
C11 0.0242 (6) 0.0301 (6) 0.0194 (5) 0.0025 (5) −0.0021 (4) −0.0005 (4)
C12 0.0289 (7) 0.0346 (7) 0.0434 (8) −0.0081 (6) −0.0053 (6) 0.0044 (6)
C13 0.0378 (7) 0.0374 (7) 0.0263 (6) −0.0042 (6) −0.0118 (5) 0.0057 (5)
C14 0.0272 (7) 0.0746 (12) 0.0327 (7) 0.0171 (7) −0.0063 (6) −0.0116 (7)
C15 0.0276 (6) 0.0184 (5) 0.0215 (5) −0.0020 (4) 0.0035 (4) −0.0001 (4)
C16 0.0245 (6) 0.0314 (7) 0.0377 (7) 0.0021 (5) 0.0075 (5) −0.0009 (5)
C17 0.0192 (6) 0.0355 (7) 0.0334 (6) −0.0014 (5) 0.0037 (5) −0.0032 (5)

Geometric parameters (Å, °)

O1—C1 1.3549 (14) C9—H9C 0.9800
O1—H1 0.927 (16) C10—H10A 0.9800
N1—C15 1.2749 (15) C10—H10B 0.9800
N1—C16 1.4638 (15) C10—H10C 0.9800
C1—C2 1.4058 (16) C11—C14 1.5257 (18)
C1—C6 1.4147 (15) C11—C12 1.5325 (18)
C2—C3 1.3939 (16) C11—C13 1.5332 (16)
C2—C7 1.5398 (14) C12—H12A 0.9800
C3—C4 1.4028 (15) C12—H12B 0.9800
C3—H3 0.9500 C12—H12C 0.9800
C4—C5 1.3863 (15) C13—H13A 0.9800
C4—C11 1.5328 (16) C13—H13B 0.9800
C5—C6 1.3914 (16) C13—H13C 0.9800
C5—H5 0.9500 C14—H14A 0.9800
C6—C15 1.4613 (15) C14—H14B 0.9800
C7—C10 1.5295 (17) C14—H14C 0.9800
C7—C8 1.5371 (17) C15—H15 0.9500
C7—C9 1.5380 (15) C16—C17 1.5244 (18)
C8—H8A 0.9800 C16—H16A 0.9900
C8—H8B 0.9800 C16—H16B 0.9900
C8—H8C 0.9800 C17—C17i 1.525 (3)
C9—H9A 0.9800 C17—H17A 0.9900
C9—H9B 0.9800 C17—H17B 0.9900
C1—O1—H1 107.4 (10) H10A—C10—H10C 109.5
C15—N1—C16 118.61 (11) H10B—C10—H10C 109.5
O1—C1—C2 120.20 (10) C14—C11—C12 108.67 (12)
O1—C1—C6 119.71 (10) C14—C11—C4 112.44 (10)
C2—C1—C6 120.09 (10) C12—C11—C4 109.40 (10)
C3—C2—C1 117.05 (10) C14—C11—C13 108.51 (11)
C3—C2—C7 121.48 (10) C12—C11—C13 108.45 (10)
C1—C2—C7 121.47 (10) C4—C11—C13 109.28 (10)
C2—C3—C4 124.44 (10) C11—C12—H12A 109.5
C2—C3—H3 117.8 C11—C12—H12B 109.5
C4—C3—H3 117.8 H12A—C12—H12B 109.5
C5—C4—C3 116.69 (10) C11—C12—H12C 109.5
C5—C4—C11 120.36 (10) H12A—C12—H12C 109.5
C3—C4—C11 122.95 (10) H12B—C12—H12C 109.5
C4—C5—C6 121.73 (10) C11—C13—H13A 109.5
C4—C5—H5 119.1 C11—C13—H13B 109.5
C6—C5—H5 119.1 H13A—C13—H13B 109.5
C5—C6—C1 120.00 (10) C11—C13—H13C 109.5
C5—C6—C15 118.70 (10) H13A—C13—H13C 109.5
C1—C6—C15 121.27 (10) H13B—C13—H13C 109.5
C10—C7—C8 107.48 (10) C11—C14—H14A 109.5
C10—C7—C9 107.51 (10) C11—C14—H14B 109.5
C8—C7—C9 110.11 (10) H14A—C14—H14B 109.5
C10—C7—C2 111.77 (10) C11—C14—H14C 109.5
C8—C7—C2 110.79 (9) H14A—C14—H14C 109.5
C9—C7—C2 109.11 (9) H14B—C14—H14C 109.5
C7—C8—H8A 109.5 N1—C15—C6 122.40 (10)
C7—C8—H8B 109.5 N1—C15—H15 118.8
H8A—C8—H8B 109.5 C6—C15—H15 118.8
C7—C8—H8C 109.5 N1—C16—C17 110.12 (11)
H8A—C8—H8C 109.5 N1—C16—H16A 109.6
H8B—C8—H8C 109.5 C17—C16—H16A 109.6
C7—C9—H9A 109.5 N1—C16—H16B 109.6
C7—C9—H9B 109.5 C17—C16—H16B 109.6
H9A—C9—H9B 109.5 H16A—C16—H16B 108.1
C7—C9—H9C 109.5 C16—C17—C17i 113.31 (13)
H9A—C9—H9C 109.5 C16—C17—H17A 108.9
H9B—C9—H9C 109.5 C17i—C17—H17A 108.9
C7—C10—H10A 109.5 C16—C17—H17B 108.9
C7—C10—H10B 109.5 C17i—C17—H17B 108.9
H10A—C10—H10B 109.5 H17A—C17—H17B 107.7
C7—C10—H10C 109.5

Symmetry codes: (i) −x+1, −y+2, −z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···N1 0.927 (16) 1.735 (17) 2.5840 (13) 150.8 (14)
C8—H8B···O1 0.98 2.29 2.9546 (16) 125.
C9—H9A···O1 0.98 2.44 3.0720 (15) 122.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5350).

References

  1. Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
  2. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Doyle, D. J., Gibson, V. C. & White, A. J. P. (2007). Dalton Trans. pp. 358–363. [DOI] [PubMed]
  4. Keizer, T. S., De Pue, L. J., Parkin, S. & Atwood, D. A. (2002a). J. Cluster Sci. 13, 609–620.
  5. Keizer, T. S., De Pue, L. J., Parkin, S. & Atwood, D. A. (2002b). J. Am. Chem. Soc. 124, 1864–1865. [DOI] [PubMed]
  6. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811041614/xu5350sup1.cif

e-67-o2954-sup1.cif (22.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811041614/xu5350Isup2.hkl

e-67-o2954-Isup2.hkl (178KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES