Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 12;67(Pt 11):o2956. doi: 10.1107/S160053681104147X

N-Butyl-4,6-diphenyl­pyrimidin-2-amine

Hoong-Kun Fun a,*,, Madhukar Hemamalini a, Anita Hazra b, Shyamaprosad Goswami b
PMCID: PMC3247364  PMID: 22219982

Abstract

In the title compound, C20H21N3, the pyrimidine ring is inclined at dihedral angles of 51.57 (4) and 2.49 (4)° to the two phenyl rings. The dihedral angle between the two terminal phenyl rings is 50.44 (4)°. In the crystal, adjacent mol­ecules are linked via a pair of N—H⋯N hydrogen bonds, forming an inversion dimer with an R 2 2(8) ring motif. Furthermore, the crystal structure is stabilized by a weak π–π inter­action, with a centroid–centroid distance of 3.6065 (5) Å.

Related literature

For biological applications of pyrimidine derivatives, see: Katrizky et al. (1982); Brown & Lyall (1964). For the synthesis, see: Goswami et al. (2009). For graph-set notation, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-67-o2956-scheme1.jpg

Experimental

Crystal data

  • C20H21N3

  • M r = 303.40

  • Triclinic, Inline graphic

  • a = 8.1544 (1) Å

  • b = 9.5284 (1) Å

  • c = 11.3237 (2) Å

  • α = 77.090 (1)°

  • β = 74.152 (1)°

  • γ = 71.288 (1)°

  • V = 792.70 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.47 × 0.25 × 0.09 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.965, T max = 0.993

  • 26407 measured reflections

  • 6933 independent reflections

  • 5769 reflections with I > 2σ(I)

  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.136

  • S = 1.04

  • 6933 reflections

  • 292 parameters

  • All H-atom parameters refined

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681104147X/is2788sup1.cif

e-67-o2956-sup1.cif (20.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681104147X/is2788Isup2.hkl

e-67-o2956-Isup2.hkl (332.4KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681104147X/is2788Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1N3⋯N1i 0.869 (15) 2.262 (15) 3.1249 (10) 172.4 (15)

Symmetry code: (i) Inline graphic.

Acknowledgments

HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship. SG and AH thank the CSIR [No. 01 (2292)/09/EMR-II], Government of India, for financial support.

supplementary crystallographic information

Comment

Substituted pyrimidine derivatives are utilized as antiviral and antifungal agents (Katrizky et al., 1982; Brown & Lyall, 1964). 2-Butylamino-4,6-diphenyl pyrimidine has been synthesized by solid-phase microwave irradiation (Goswami et al., 2009). The crystal structure of 2-butylamino-4,6-diphenylpyrimidine is reported here.

The molecular structure of the title compound is shown in Fig. 1. The pyrimidine (N1/N2/C7–C9/C16) ring is inclined at dihedral angles of 51.57 (4) and 2.49 (4)°, respectively, to the two phenyl (C1–C6 and C10–C15) rings. The corresponding angle between the two terminal phenyl (C1–C6 and C10–C15) rings is 50.44 (4)°.

In the crystal, (Fig. 2), the adjacent molecules are linked via a pair of N—H···N (Table 1) hydrogen bonds, forming an inversion dimer with an R22(8) ring motif (Bernstein et al., 1995). The crystal structure is further stabilized by a weak π–π interaction between the pyrimidine (Cg1; N1/N2/C7–C9/C16) and phenyl (Cg3; C10–C15) rings [Cg1···Cg3ii = 3.6065 (5) Å; (ii) 1 - x, 1 - y, -z].

Experimental

A mixture of S-methylisothiourea sulphate (556 mg, 2 mmol), potassium carbonate (345 mg, 2.5 mmol) and butylamine (292 mg, 4 mmol) was irradiated at 450 Watt for 12 minutes in a microwave oven. The solid mass was washed with chloroform to remove the unreacted butylamine and then dried. The solid residue was then mixed with dibenzoylmethane (896 mg, 4 mmol) and again irradiated at 300 Watt for 6 minutes. Water was added to it and the contents were extracted with chloroform. The crude product was then purified through column chromatography (silica gel, 100–200 mesh) using 10% ethyl acetate in petroleum ether as an eluent to afford pure compound. The single crystal was grown by slow evaporation of a chloroform and methanol (3:1) solution (m.p. 65–66 °C).

Refinement

All hydrogen atoms were located from a difference Fourier maps and refined freely [N—H = 0.869 (14) Å and C—H = 0.961 (15)–1.006 (12) Å]. The highest residual electron density peak is located at 0.68 Å from C3 and the deepest hole 1.26 Å located at from C16.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

A crystal packing view of the title compound along the b axis.

Crystal data

C20H21N3 Z = 2
Mr = 303.40 F(000) = 324
Triclinic, P1 Dx = 1.271 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.1544 (1) Å Cell parameters from 8544 reflections
b = 9.5284 (1) Å θ = 2.7–35.6°
c = 11.3237 (2) Å µ = 0.08 mm1
α = 77.090 (1)° T = 100 K
β = 74.152 (1)° Block, colourless
γ = 71.288 (1)° 0.47 × 0.25 × 0.09 mm
V = 792.70 (2) Å3

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 6933 independent reflections
Radiation source: fine-focus sealed tube 5769 reflections with I > 2σ(I)
graphite Rint = 0.031
φ and ω scans θmax = 35.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −13→12
Tmin = 0.965, Tmax = 0.993 k = −15→15
26407 measured reflections l = −18→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136 All H-atom parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.0772P)2 + 0.1237P] where P = (Fo2 + 2Fc2)/3
6933 reflections (Δ/σ)max = 0.001
292 parameters Δρmax = 0.56 e Å3
0 restraints Δρmin = −0.31 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.36098 (9) 0.87806 (7) −0.01978 (6) 0.01301 (12)
N2 0.37435 (8) 0.65917 (7) 0.13733 (6) 0.01297 (12)
N3 0.48902 (9) 0.84810 (7) 0.14526 (6) 0.01494 (12)
C1 0.25894 (11) 0.85602 (8) −0.30090 (7) 0.01612 (14)
C2 0.19425 (11) 0.94496 (9) −0.40295 (8) 0.01783 (15)
C3 0.08601 (11) 1.09047 (9) −0.39389 (8) 0.01712 (14)
C4 0.04519 (10) 1.14759 (8) −0.28338 (8) 0.01701 (14)
C5 0.11410 (10) 1.06024 (8) −0.18232 (7) 0.01555 (14)
C6 0.22075 (10) 0.91331 (8) −0.19031 (7) 0.01279 (13)
C7 0.28463 (10) 0.81869 (8) −0.07941 (7) 0.01245 (12)
C8 0.25519 (10) 0.67743 (8) −0.03777 (7) 0.01350 (13)
C9 0.30031 (9) 0.60099 (7) 0.07420 (7) 0.01186 (12)
C10 0.26882 (9) 0.45275 (7) 0.13143 (7) 0.01231 (12)
C11 0.31422 (10) 0.38330 (8) 0.24527 (7) 0.01509 (13)
C12 0.28902 (11) 0.24334 (8) 0.29942 (8) 0.01732 (14)
C13 0.21705 (11) 0.17083 (8) 0.24098 (8) 0.01694 (14)
C14 0.17268 (11) 0.23799 (8) 0.12759 (8) 0.01749 (14)
C15 0.19841 (10) 0.37773 (8) 0.07272 (8) 0.01567 (14)
C16 0.40608 (10) 0.79250 (7) 0.08610 (7) 0.01233 (12)
C17 0.51118 (10) 0.78847 (8) 0.27152 (7) 0.01481 (13)
C18 0.66070 (11) 0.64437 (8) 0.28644 (7) 0.01577 (14)
C19 0.68324 (11) 0.60211 (8) 0.42038 (8) 0.01700 (14)
C20 0.82332 (13) 0.45432 (10) 0.44264 (10) 0.02491 (18)
H1 0.3360 (16) 0.7506 (14) −0.3075 (11) 0.021 (3)*
H2 0.2272 (18) 0.9035 (15) −0.4830 (12) 0.027 (3)*
H3 0.0400 (17) 1.1531 (14) −0.4640 (12) 0.022 (3)*
H4 −0.0327 (17) 1.2473 (14) −0.2754 (12) 0.024 (3)*
H5 0.0862 (16) 1.1020 (13) −0.1050 (11) 0.021 (3)*
H8 0.2022 (17) 0.6372 (14) −0.0856 (12) 0.025 (3)*
H11 0.3622 (17) 0.4368 (14) 0.2855 (12) 0.025 (3)*
H12 0.3224 (18) 0.1965 (14) 0.3804 (13) 0.027 (3)*
H13 0.1961 (18) 0.0735 (15) 0.2800 (13) 0.029 (3)*
H14 0.1241 (18) 0.1847 (15) 0.0865 (12) 0.028 (3)*
H15 0.1669 (18) 0.4180 (14) −0.0092 (12) 0.026 (3)*
H17A 0.3985 (16) 0.7737 (13) 0.3224 (11) 0.017 (3)*
H17B 0.5357 (16) 0.8685 (13) 0.3029 (11) 0.018 (3)*
H18A 0.7692 (17) 0.6580 (14) 0.2288 (12) 0.023 (3)*
H18B 0.6321 (17) 0.5604 (14) 0.2616 (12) 0.026 (3)*
H19A 0.7185 (17) 0.6833 (14) 0.4430 (12) 0.023 (3)*
H19B 0.5682 (17) 0.5940 (13) 0.4765 (12) 0.022 (3)*
H20A 0.938 (2) 0.4555 (16) 0.3902 (14) 0.036 (4)*
H20B 0.8407 (19) 0.4286 (16) 0.5301 (14) 0.034 (4)*
H20C 0.7926 (19) 0.3696 (16) 0.4220 (13) 0.033 (3)*
H1N3 0.5202 (19) 0.9295 (16) 0.1112 (13) 0.031 (3)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0155 (3) 0.0116 (2) 0.0130 (3) −0.00496 (19) −0.0050 (2) −0.00004 (19)
N2 0.0150 (3) 0.0112 (2) 0.0137 (3) −0.00512 (19) −0.0040 (2) −0.00066 (19)
N3 0.0221 (3) 0.0124 (2) 0.0142 (3) −0.0083 (2) −0.0081 (2) 0.0009 (2)
C1 0.0197 (3) 0.0139 (3) 0.0158 (3) −0.0044 (2) −0.0064 (3) −0.0018 (2)
C2 0.0220 (4) 0.0188 (3) 0.0143 (3) −0.0066 (3) −0.0067 (3) −0.0010 (2)
C3 0.0175 (3) 0.0179 (3) 0.0167 (3) −0.0071 (2) −0.0070 (3) 0.0031 (2)
C4 0.0165 (3) 0.0142 (3) 0.0185 (4) −0.0033 (2) −0.0051 (3) 0.0013 (2)
C5 0.0167 (3) 0.0137 (3) 0.0150 (3) −0.0033 (2) −0.0035 (3) −0.0008 (2)
C6 0.0142 (3) 0.0119 (3) 0.0131 (3) −0.0053 (2) −0.0042 (2) 0.0006 (2)
C7 0.0134 (3) 0.0118 (3) 0.0122 (3) −0.0038 (2) −0.0031 (2) −0.0012 (2)
C8 0.0165 (3) 0.0120 (3) 0.0137 (3) −0.0057 (2) −0.0052 (2) −0.0005 (2)
C9 0.0122 (3) 0.0108 (3) 0.0128 (3) −0.0038 (2) −0.0023 (2) −0.0017 (2)
C10 0.0123 (3) 0.0109 (3) 0.0139 (3) −0.0043 (2) −0.0023 (2) −0.0010 (2)
C11 0.0184 (3) 0.0142 (3) 0.0137 (3) −0.0070 (2) −0.0041 (3) 0.0002 (2)
C12 0.0210 (3) 0.0152 (3) 0.0152 (3) −0.0077 (2) −0.0032 (3) 0.0019 (2)
C13 0.0174 (3) 0.0122 (3) 0.0203 (4) −0.0063 (2) −0.0011 (3) −0.0009 (2)
C14 0.0189 (3) 0.0144 (3) 0.0220 (4) −0.0077 (2) −0.0052 (3) −0.0026 (3)
C15 0.0182 (3) 0.0134 (3) 0.0175 (3) −0.0063 (2) −0.0062 (3) −0.0008 (2)
C16 0.0139 (3) 0.0109 (3) 0.0128 (3) −0.0040 (2) −0.0035 (2) −0.0014 (2)
C17 0.0191 (3) 0.0131 (3) 0.0139 (3) −0.0045 (2) −0.0067 (3) −0.0016 (2)
C18 0.0187 (3) 0.0137 (3) 0.0166 (3) −0.0041 (2) −0.0069 (3) −0.0024 (2)
C19 0.0203 (3) 0.0147 (3) 0.0177 (4) −0.0052 (2) −0.0082 (3) −0.0002 (2)
C20 0.0288 (4) 0.0190 (4) 0.0285 (5) −0.0016 (3) −0.0166 (4) −0.0012 (3)

Geometric parameters (Å, °)

N1—C7 1.3378 (9) C10—C11 1.3996 (10)
N1—C16 1.3598 (9) C10—C15 1.4024 (10)
N2—C9 1.3455 (9) C11—C12 1.3923 (10)
N2—C16 1.3479 (9) C11—H11 0.974 (13)
N3—C16 1.3502 (9) C12—C13 1.3914 (11)
N3—C17 1.4532 (10) C12—H12 0.995 (13)
N3—H1N3 0.869 (14) C13—C14 1.3883 (11)
C1—C2 1.3930 (11) C13—H13 0.980 (14)
C1—C6 1.3952 (11) C14—C15 1.3933 (11)
C1—H1 1.006 (12) C14—H14 0.983 (14)
C2—C3 1.3931 (11) C15—H15 0.991 (13)
C2—H2 1.005 (13) C17—C18 1.5281 (10)
C3—C4 1.3905 (12) C17—H17A 0.976 (12)
C3—H3 0.967 (13) C17—H17B 1.002 (12)
C4—C5 1.3942 (11) C18—C19 1.5259 (11)
C4—H4 0.967 (13) C18—H18A 0.973 (13)
C5—C6 1.3989 (10) C18—H18B 1.015 (13)
C5—H5 0.983 (12) C19—C20 1.5224 (11)
C6—C7 1.4870 (10) C19—H19A 1.009 (13)
C7—C8 1.3977 (10) C19—H19B 0.995 (13)
C8—C9 1.3942 (10) C20—H20A 0.961 (15)
C8—H8 0.977 (13) C20—H20B 1.003 (14)
C9—C10 1.4879 (10) C20—H20C 1.007 (14)
C7—N1—C16 115.44 (6) C13—C12—H12 120.7 (8)
C9—N2—C16 117.01 (6) C11—C12—H12 119.1 (8)
C16—N3—C17 122.97 (6) C14—C13—C12 119.61 (7)
C16—N3—H1N3 119.7 (9) C14—C13—H13 120.0 (8)
C17—N3—H1N3 116.9 (9) C12—C13—H13 120.4 (8)
C2—C1—C6 120.39 (7) C13—C14—C15 120.42 (7)
C2—C1—H1 119.9 (7) C13—C14—H14 118.8 (8)
C6—C1—H1 119.7 (7) C15—C14—H14 120.8 (8)
C1—C2—C3 120.08 (7) C14—C15—C10 120.50 (7)
C1—C2—H2 119.4 (7) C14—C15—H15 116.3 (7)
C3—C2—H2 120.5 (7) C10—C15—H15 123.2 (7)
C4—C3—C2 119.84 (7) N2—C16—N3 117.51 (6)
C4—C3—H3 119.3 (7) N2—C16—N1 126.16 (7)
C2—C3—H3 120.8 (7) N3—C16—N1 116.33 (6)
C3—C4—C5 120.14 (7) N3—C17—C18 115.74 (6)
C3—C4—H4 120.4 (8) N3—C17—H17A 108.5 (7)
C5—C4—H4 119.4 (8) C18—C17—H17A 110.1 (7)
C4—C5—C6 120.25 (7) N3—C17—H17B 106.5 (7)
C4—C5—H5 119.7 (7) C18—C17—H17B 108.5 (7)
C6—C5—H5 120.1 (7) H17A—C17—H17B 107.3 (10)
C1—C6—C5 119.26 (7) C19—C18—C17 110.79 (6)
C1—C6—C7 121.10 (6) C19—C18—H18A 111.7 (7)
C5—C6—C7 119.58 (7) C17—C18—H18A 108.8 (7)
N1—C7—C8 122.79 (7) C19—C18—H18B 109.7 (7)
N1—C7—C6 117.19 (6) C17—C18—H18B 109.1 (7)
C8—C7—C6 119.93 (6) H18A—C18—H18B 106.6 (10)
C9—C8—C7 117.28 (6) C20—C19—C18 113.18 (7)
C9—C8—H8 122.7 (8) C20—C19—H19A 108.2 (7)
C7—C8—H8 120.0 (8) C18—C19—H19A 109.3 (7)
N2—C9—C8 121.17 (6) C20—C19—H19B 108.4 (7)
N2—C9—C10 116.16 (6) C18—C19—H19B 109.2 (7)
C8—C9—C10 122.67 (6) H19A—C19—H19B 108.4 (10)
C11—C10—C15 118.50 (6) C19—C20—H20A 112.0 (9)
C11—C10—C9 119.78 (6) C19—C20—H20B 112.9 (8)
C15—C10—C9 121.71 (7) H20A—C20—H20B 106.1 (12)
C12—C11—C10 120.77 (7) C19—C20—H20C 110.9 (8)
C12—C11—H11 121.4 (8) H20A—C20—H20C 105.5 (12)
C10—C11—H11 117.8 (8) H20B—C20—H20C 109.0 (11)
C13—C12—C11 120.19 (7)
C6—C1—C2—C3 −2.07 (12) C8—C9—C10—C11 −178.80 (7)
C1—C2—C3—C4 1.10 (12) N2—C9—C10—C15 −177.66 (6)
C2—C3—C4—C5 0.79 (12) C8—C9—C10—C15 2.87 (11)
C3—C4—C5—C6 −1.73 (12) C15—C10—C11—C12 −0.40 (11)
C2—C1—C6—C5 1.13 (12) C9—C10—C11—C12 −178.79 (7)
C2—C1—C6—C7 178.34 (7) C10—C11—C12—C13 −0.37 (12)
C4—C5—C6—C1 0.76 (11) C11—C12—C13—C14 0.84 (12)
C4—C5—C6—C7 −176.49 (7) C12—C13—C14—C15 −0.53 (12)
C16—N1—C7—C8 −1.02 (11) C13—C14—C15—C10 −0.24 (12)
C16—N1—C7—C6 175.47 (6) C11—C10—C15—C14 0.71 (11)
C1—C6—C7—N1 132.94 (8) C9—C10—C15—C14 179.06 (7)
C5—C6—C7—N1 −49.86 (10) C9—N2—C16—N3 −176.52 (6)
C1—C6—C7—C8 −50.47 (10) C9—N2—C16—N1 4.11 (11)
C5—C6—C7—C8 126.73 (8) C17—N3—C16—N2 −13.28 (11)
N1—C7—C8—C9 3.34 (11) C17—N3—C16—N1 166.16 (7)
C6—C7—C8—C9 −173.05 (6) C7—N1—C16—N2 −2.90 (11)
C16—N2—C9—C8 −1.39 (10) C7—N1—C16—N3 177.72 (6)
C16—N2—C9—C10 179.13 (6) C16—N3—C17—C18 78.93 (9)
C7—C8—C9—N2 −2.05 (11) N3—C17—C18—C19 174.06 (6)
C7—C8—C9—C10 177.40 (6) C17—C18—C19—C20 176.63 (7)
N2—C9—C10—C11 0.68 (10)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H1N3···N1i 0.869 (15) 2.262 (15) 3.1249 (10) 172.4 (15)

Symmetry codes: (i) −x+1, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2788).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Brown, D. J. & Lyall, M. J. (1964). Aust. J. Chem. 17, 794–802.
  3. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  5. Goswami, S., Hazra, A. & Jana, S. (2009). Bull. Chem. Soc. Jpn, 82, 1175–1181.
  6. Katrizky, A. R., Saigado, H. J., Chermprapai, A. & Ponkshe, N. K. (1982). J. Chem. Soc. Perkin Trans. 1, pp. 153–158.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681104147X/is2788sup1.cif

e-67-o2956-sup1.cif (20.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681104147X/is2788Isup2.hkl

e-67-o2956-Isup2.hkl (332.4KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681104147X/is2788Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES