Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Oct 12;67(Pt 11):o2961. doi: 10.1107/S1600536811041869

(Z)-2-(4-Nitro­benzyl­idene)-1-benzofuran-3(2H)-one

J Satyanarayana Reddy a, N Ravikumar a, J Venkata Prasad a, G Gopi Krishna a, K Anand Solomon a,*
PMCID: PMC3247368  PMID: 22219986

Abstract

In the crystal structure of the title compound, C15H9NO4, weak C—H⋯O inter­actions generate rings with R 2 2(8) motifs. The supra­molecular aggregation is completed by the presence of C—H⋯O and van der Waals inter­actions.

Related literature

For the synthesis and biological activity of substituted aurones, see: Varma & Varma (1992); Beney et al. (2001); Sim et al. (2008). For the assignment of conformations and the orientation of the substituents, see: Nardelli (1983, 1995); Klyne & Prelog (1960). For hydrogen bonds, see: Desiraju & Steiner (1999). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995). For the diverse theraputic properties of aurones, see: Villemin et al. (1998). Several multifunctionalized aurones have been reported to exhibit anti-malarial (Souard et al. 2010) and anti-histamine (Wang et al. 2007) properties. graphic file with name e-67-o2961-scheme1.jpg

Experimental

Crystal data

  • C15H9NO4

  • M r = 267.23

  • Triclinic, Inline graphic

  • a = 6.6916 (2) Å

  • b = 7.4708 (2) Å

  • c = 12.6414 (3) Å

  • α = 100.459 (1)°

  • β = 93.019 (2)°

  • γ = 102.043 (1)°

  • V = 605.09 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 303 K

  • 0.30 × 0.20 × 0.20 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.932, T max = 0.955

  • 12519 measured reflections

  • 2116 independent reflections

  • 1869 reflections with I > 2σ(I)

  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.105

  • S = 1.03

  • 2116 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811041869/zj2025sup1.cif

e-67-o2961-sup1.cif (17.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811041869/zj2025Isup2.hkl

e-67-o2961-Isup2.hkl (104KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811041869/zj2025Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯O1 0.93 2.32 2.9547 (16) 125
C9—H9⋯O2i 0.93 2.50 3.2951 (14) 143

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the Managing Trustee and the Founder Trustee of the Sankar Foundation for their financial support and encouragement. We also acknowledge, The Head, SAIF, IIT-Chennai, for the data collection.

supplementary crystallographic information

Comment

Aurones belong flavonoids family, which are structurally isomers of flavones. They form essential structural scaffolds in many natural and synthetic molecules possessing diverse therapeutic properties (Villemin et al. 1998) Several multifunctionalized aurones were reported to exhibit anti-malarial (Souard et al. 2010) and anti-histamine (Wang et al. 2007) properties.

The title compound (Fig.1),C15H9NO4,crystallized in triclinic space group P-1 with two molecules in the assymetric unit (Fig.2).The crystal structure of (I) is stabilized by C—H···O interactions.The range of H···O distances (Table 1) found in (I) agrees with those found for C—H···O hydrogen bonds (Desiraju & Steiner,1999). The coumaranone moiety at C10 is in co-planar conformation [C7—C8—C9—C10=179.55 (13)°].The translational related molecules interact with each other via weak C—H···O [C9—H9···O2: H9···O2 = 2.50 Å, θ = 143°] hydrogen bonds along the c axis, and form a one dimensional chain (Fig. 3).

Experimental

3-coumaranone was allowed to react with 4-nitrobenzaldehyde in ethanolic solution of potassium hydroxide for 30 minutes to yield the title compound (Fig.4). The pure product was obtained by recrystallization in methanol.

Refinement

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Figures

Fig. 1.

Fig. 1.

ORTEP diagram of (Z)-2-(4-nitrobenzylidene)benzofuran-3(2H)-one. (Thermal ellipsoids are at 50% probability level).

Fig. 2.

Fig. 2.

Crystal packing diagram of the title compound.

Fig. 3.

Fig. 3.

The synthetic scheme of the title compound.

Crystal data

C15H9NO4 Z = 2
Mr = 267.23 F(000) = 276
Triclinic, P1 Dx = 1.467 Mg m3
Hall symbol: -P 1 Melting point: 460 K
a = 6.6916 (2) Å Mo Kα radiation, λ = 0.71073 Å
b = 7.4708 (2) Å Cell parameters from 7266 reflections
c = 12.6414 (3) Å θ = 2.8–30.5°
α = 100.459 (1)° µ = 0.11 mm1
β = 93.019 (2)° T = 303 K
γ = 102.043 (1)° Block, yellow
V = 605.09 (3) Å3 0.30 × 0.20 × 0.20 mm

Data collection

Bruker Kappa APEXII CCD diffractometer 2116 independent reflections
Radiation source: fine-focus sealed tube 1869 reflections with I > 2σ(I)
graphite Rint = 0.020
ω and φ scans θmax = 25.0°, θmin = 2.8°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −7→7
Tmin = 0.932, Tmax = 0.955 k = −8→8
12519 measured reflections l = −15→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0599P)2 + 0.1178P] where P = (Fo2 + 2Fc2)/3
2116 reflections (Δ/σ)max < 0.001
181 parameters Δρmax = 0.20 e Å3
0 restraints Δρmin = −0.25 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.8384 (2) 0.28398 (18) −0.19093 (11) 0.0456 (3)
C2 0.7837 (2) 0.3025 (2) −0.29555 (11) 0.0548 (4)
H2 0.6469 0.2729 −0.3234 0.066*
C3 0.9366 (3) 0.3652 (2) −0.35600 (12) 0.0595 (4)
H3 0.9037 0.3790 −0.4260 0.071*
C4 1.1407 (3) 0.4087 (2) −0.31413 (12) 0.0586 (4)
H4 1.2417 0.4519 −0.3569 0.070*
C5 1.1987 (2) 0.3898 (2) −0.21071 (12) 0.0526 (4)
H5 1.3355 0.4179 −0.1830 0.063*
C6 1.0423 (2) 0.32720 (17) −0.15171 (10) 0.0431 (3)
C7 0.88073 (19) 0.22680 (18) −0.01762 (11) 0.0429 (3)
C8 0.7214 (2) 0.21929 (19) −0.10621 (12) 0.0485 (3)
C9 0.8470 (2) 0.17046 (18) 0.07516 (11) 0.0452 (3)
H9 0.7102 0.1217 0.0832 0.054*
C10 0.9913 (2) 0.17343 (17) 0.16591 (10) 0.0411 (3)
C11 0.9136 (2) 0.11596 (19) 0.25736 (11) 0.0470 (3)
H11 0.7727 0.0733 0.2574 0.056*
C12 1.0401 (2) 0.12085 (19) 0.34749 (11) 0.0477 (3)
H12 0.9866 0.0829 0.4083 0.057*
C13 1.2473 (2) 0.18320 (18) 0.34544 (10) 0.0444 (3)
C14 1.3322 (2) 0.23746 (19) 0.25581 (11) 0.0475 (3)
H14 1.4736 0.2769 0.2562 0.057*
C15 1.2041 (2) 0.23210 (18) 0.16603 (11) 0.0452 (3)
H15 1.2592 0.2677 0.1050 0.054*
N1 1.3855 (2) 0.19263 (19) 0.44088 (10) 0.0575 (3)
O1 1.07162 (13) 0.29789 (13) −0.04757 (7) 0.0459 (3)
O2 0.53638 (16) 0.16865 (18) −0.10414 (10) 0.0732 (4)
O3 1.5647 (2) 0.2687 (3) 0.44252 (12) 0.1051 (6)
O4 1.31586 (19) 0.12304 (19) 0.51458 (9) 0.0760 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0521 (8) 0.0404 (7) 0.0431 (7) 0.0118 (6) −0.0073 (6) 0.0070 (5)
C2 0.0648 (9) 0.0512 (8) 0.0466 (8) 0.0140 (7) −0.0133 (7) 0.0092 (6)
C3 0.0845 (11) 0.0537 (8) 0.0392 (7) 0.0150 (8) −0.0068 (7) 0.0108 (6)
C4 0.0747 (10) 0.0542 (8) 0.0465 (8) 0.0093 (7) 0.0062 (7) 0.0142 (6)
C5 0.0543 (8) 0.0539 (8) 0.0483 (8) 0.0072 (6) 0.0001 (6) 0.0135 (6)
C6 0.0513 (8) 0.0395 (7) 0.0382 (7) 0.0108 (5) −0.0043 (5) 0.0084 (5)
C7 0.0404 (7) 0.0435 (7) 0.0439 (7) 0.0085 (5) −0.0025 (5) 0.0090 (5)
C8 0.0443 (8) 0.0499 (8) 0.0513 (8) 0.0110 (6) −0.0058 (6) 0.0121 (6)
C9 0.0406 (7) 0.0476 (7) 0.0468 (8) 0.0085 (5) 0.0004 (6) 0.0102 (6)
C10 0.0443 (7) 0.0385 (6) 0.0405 (7) 0.0092 (5) 0.0016 (5) 0.0084 (5)
C11 0.0424 (7) 0.0525 (8) 0.0481 (8) 0.0108 (6) 0.0064 (6) 0.0143 (6)
C12 0.0537 (8) 0.0522 (8) 0.0414 (7) 0.0143 (6) 0.0092 (6) 0.0159 (6)
C13 0.0511 (8) 0.0451 (7) 0.0378 (7) 0.0124 (6) −0.0011 (6) 0.0098 (5)
C14 0.0418 (7) 0.0547 (8) 0.0450 (8) 0.0055 (6) −0.0003 (6) 0.0145 (6)
C15 0.0463 (7) 0.0510 (7) 0.0385 (7) 0.0067 (6) 0.0023 (5) 0.0145 (6)
N1 0.0585 (8) 0.0713 (8) 0.0436 (7) 0.0123 (6) −0.0027 (6) 0.0187 (6)
O1 0.0426 (5) 0.0546 (5) 0.0400 (5) 0.0067 (4) −0.0041 (4) 0.0154 (4)
O2 0.0437 (6) 0.1012 (9) 0.0775 (8) 0.0093 (6) −0.0083 (5) 0.0363 (7)
O3 0.0651 (8) 0.1611 (15) 0.0821 (9) −0.0170 (9) −0.0255 (7) 0.0637 (10)
O4 0.0768 (8) 0.1133 (10) 0.0450 (6) 0.0215 (7) 0.0047 (5) 0.0342 (6)

Geometric parameters (Å, °)

C1—C6 1.3780 (19) C9—C10 1.4541 (18)
C1—C2 1.3922 (19) C9—H9 0.9300
C1—C8 1.453 (2) C10—C11 1.3935 (19)
C2—C3 1.365 (2) C10—C15 1.3993 (19)
C2—H2 0.9300 C11—C12 1.3736 (19)
C3—C4 1.388 (2) C11—H11 0.9300
C3—H3 0.9300 C12—C13 1.371 (2)
C4—C5 1.384 (2) C12—H12 0.9300
C4—H4 0.9300 C13—C14 1.3816 (19)
C5—C6 1.369 (2) C13—N1 1.4628 (18)
C5—H5 0.9300 C14—C15 1.3752 (19)
C6—O1 1.3837 (16) C14—H14 0.9300
C7—C9 1.331 (2) C15—H15 0.9300
C7—O1 1.3777 (16) N1—O3 1.2127 (17)
C7—C8 1.4900 (18) N1—O4 1.2150 (17)
C8—O2 1.2200 (17)
C6—C1—C2 119.87 (14) C7—C9—H9 115.1
C6—C1—C8 106.79 (12) C10—C9—H9 115.1
C2—C1—C8 133.31 (13) C11—C10—C15 118.52 (12)
C3—C2—C1 118.13 (14) C11—C10—C9 118.28 (12)
C3—C2—H2 120.9 C15—C10—C9 123.20 (12)
C1—C2—H2 120.9 C12—C11—C10 121.54 (13)
C2—C3—C4 120.73 (14) C12—C11—H11 119.2
C2—C3—H3 119.6 C10—C11—H11 119.2
C4—C3—H3 119.6 C13—C12—C11 118.23 (13)
C5—C4—C3 122.12 (15) C13—C12—H12 120.9
C5—C4—H4 118.9 C11—C12—H12 120.9
C3—C4—H4 118.9 C12—C13—C14 122.37 (13)
C6—C5—C4 115.94 (14) C12—C13—N1 119.42 (12)
C6—C5—H5 122.0 C14—C13—N1 118.21 (13)
C4—C5—H5 122.0 C15—C14—C13 118.91 (13)
C5—C6—C1 123.20 (13) C15—C14—H14 120.5
C5—C6—O1 123.91 (12) C13—C14—H14 120.5
C1—C6—O1 112.89 (12) C14—C15—C10 120.40 (13)
C9—C7—O1 124.72 (12) C14—C15—H15 119.8
C9—C7—C8 126.03 (13) C10—C15—H15 119.8
O1—C7—C8 109.24 (11) O3—N1—O4 122.99 (13)
O2—C8—C1 130.02 (13) O3—N1—C13 118.44 (13)
O2—C8—C7 125.87 (14) O4—N1—C13 118.57 (13)
C1—C8—C7 104.10 (11) C7—O1—C6 106.90 (10)
C7—C9—C10 129.88 (13)
C6—C1—C2—C3 −0.5 (2) C7—C9—C10—C11 176.04 (13)
C8—C1—C2—C3 −178.41 (14) C7—C9—C10—C15 −3.6 (2)
C1—C2—C3—C4 0.2 (2) C15—C10—C11—C12 1.8 (2)
C2—C3—C4—C5 0.4 (2) C9—C10—C11—C12 −177.82 (12)
C3—C4—C5—C6 −0.6 (2) C10—C11—C12—C13 −0.4 (2)
C4—C5—C6—C1 0.2 (2) C11—C12—C13—C14 −1.2 (2)
C4—C5—C6—O1 179.20 (12) C11—C12—C13—N1 179.06 (12)
C2—C1—C6—C5 0.3 (2) C12—C13—C14—C15 1.2 (2)
C8—C1—C6—C5 178.73 (12) N1—C13—C14—C15 −179.02 (12)
C2—C1—C6—O1 −178.73 (11) C13—C14—C15—C10 0.3 (2)
C8—C1—C6—O1 −0.35 (15) C11—C10—C15—C14 −1.8 (2)
C6—C1—C8—O2 178.90 (15) C9—C10—C15—C14 177.86 (12)
C2—C1—C8—O2 −3.0 (3) C12—C13—N1—O3 −171.28 (15)
C6—C1—C8—C7 −1.28 (14) C14—C13—N1—O3 9.0 (2)
C2—C1—C8—C7 176.79 (14) C12—C13—N1—O4 9.1 (2)
C9—C7—C8—O2 3.7 (2) C14—C13—N1—O4 −170.61 (13)
O1—C7—C8—O2 −177.66 (13) C9—C7—O1—C6 175.88 (12)
C9—C7—C8—C1 −176.09 (13) C8—C7—O1—C6 −2.75 (13)
O1—C7—C8—C1 2.52 (14) C5—C6—O1—C7 −177.09 (12)
O1—C7—C9—C10 2.1 (2) C1—C6—O1—C7 1.98 (14)
C8—C7—C9—C10 −179.55 (13)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C15—H15···O1 0.93 2.32 2.9547 (16) 125
C9—H9···O2i 0.93 2.50 3.2951 (14) 143

Symmetry codes: (i) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZJ2025).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
  2. Beney, C., Mariotte, A. M. & Boumendjel, A. (2001). Heterocycles, 55, 967–972.
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  4. Bruker (2004). APEX2, SAINT, XPREP and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Desiraju, G. A. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology New York: Oxford University Press Inc.
  6. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  7. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  8. Klyne, W. & Prelog, V. (1960). Experientia, 16, 521–568.
  9. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  10. Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
  11. Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Sim, H. M., Lee, C. Y., Ee, P. L. & Go, M. L. (2008). Eur. J. Pharm. Sci. 35, 293–306. [DOI] [PubMed]
  14. Souard, F., Okombi, S., Beney, C., Chevalley, S., Valentin, A. & Boumendjel, A. (2010). Bioorg. Med. Chem. 1, 5724–5731. [DOI] [PubMed]
  15. Varma, R. S. & Varma, M. (1992). Tetrahedron Lett. 33, 5937–5940.
  16. Villemin, D., Martin, B. & Bar, N. (1998). Molecules, 3, 88–93.
  17. Wang, J., Wang, N., Yao, X. & Kitanaka, S. (2007). J. Trad. Med, 2, 23–29.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811041869/zj2025sup1.cif

e-67-o2961-sup1.cif (17.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811041869/zj2025Isup2.hkl

e-67-o2961-Isup2.hkl (104KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811041869/zj2025Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES